These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30896940)

  • 1. EFSA Genetically Engineered Crop Composition Equivalence Approach: Performance and Consistency.
    Herman RA; Huang E; Fast BJ; Walker C
    J Agric Food Chem; 2019 Apr; 67(14):4080-4088. PubMed ID: 30896940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoline use in crop composition studies with genetically modified crops under EFSA guidance - Short communication.
    Herman RA; Fast BJ; Mathesius C; Delaney B
    Regul Toxicol Pharmacol; 2018 Jun; 95():204-206. PubMed ID: 29596977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clarification on "EFSA Genetically Engineered Crop Composition Equivalence Approach: Performance and Consistency".
    Herman RA; Storer NP; Walker C
    J Agric Food Chem; 2020 May; 68(21):5787-5789. PubMed ID: 32353233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equivalence Testing Approaches in Genetically Modified Organism Risk Assessment.
    van der Voet H; Paoletti C
    J Agric Food Chem; 2019 Dec; 67(49):13506-13508. PubMed ID: 31725270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equivalence tests for safety assessment of genetically modified crops using plant composition data.
    Engel J; van der Voet H
    Food Chem Toxicol; 2021 Oct; 156():112517. PubMed ID: 34411642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of genetically-modified crops: Part 1. Conditional difference testing with a given genetic background.
    Jiang C; Meng C; Schapaugh A
    PLoS One; 2019; 14(1):e0210747. PubMed ID: 30650144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability of Crops' Compositional Characteristics: What Do Experimental Data Show?
    Paoletti C; Favilla S; Leo A; Neri FM; Broll H; Fernandez A
    J Agric Food Chem; 2018 Sep; 66(36):9507-9515. PubMed ID: 30032599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative safety assessment of genetically modified crops: focus on equivalence with reference varieties could contribute to more efficient and effective field trials.
    Kleter GA; van der Voet H; Engel J; van der Berg JP
    Transgenic Res; 2023 Aug; 32(4):235-250. PubMed ID: 37213044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Legislation governing genetically modified and genome-edited crops in Europe: the need for change.
    Halford NG
    J Sci Food Agric; 2019 Jan; 99(1):8-12. PubMed ID: 29952140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety Assessment of Food and Feed from GM Crops in Europe: Evaluating EFSA's Alternative Framework for the Rat 90-day Feeding Study.
    Hong B; Du Y; Mukerji P; Roper JM; Appenzeller LM
    J Agric Food Chem; 2017 Jul; 65(27):5545-5560. PubMed ID: 28573861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unintended compositional changes in genetically modified (GM) crops: 20 years of research.
    Herman RA; Price WD
    J Agric Food Chem; 2013 Dec; 61(48):11695-701. PubMed ID: 23414177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the potential allergenicity of genetically-engineered food crops.
    Ladics GS
    J Immunotoxicol; 2019 Dec; 16(1):43-53. PubMed ID: 30409058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bringing a transgenic crop to market: where compositional analysis fits.
    Privalle LS; Gillikin N; Wandelt C
    J Agric Food Chem; 2013 Sep; 61(35):8260-6. PubMed ID: 23534903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate equivalence testing for food safety assessment.
    Leday GGR; Engel J; Vossen JH; de Vos RCH; van der Voet H
    Food Chem Toxicol; 2022 Dec; 170():113446. PubMed ID: 36191656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food and Feed Safety of Genetically Engineered Food Crops.
    Delaney B; Goodman RE; Ladics GS
    Toxicol Sci; 2018 Apr; 162(2):361-371. PubMed ID: 29211881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a construct-based risk assessment framework for genetic engineered crops.
    Beker MP; Boari P; Burachik M; Cuadrado V; Junco M; Lede S; Lema MA; Lewi D; Maggi A; Meoniz I; NoƩ G; Roca C; Robredo C; Rubinstein C; Vicien C; Whelan A
    Transgenic Res; 2016 Oct; 25(5):597-607. PubMed ID: 27339146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of GE food safety using '-omics' techniques and long-term animal feeding studies.
    Ricroch AE
    N Biotechnol; 2013 May; 30(4):349-54. PubMed ID: 23253614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ending event-based regulation of GMO crops.
    Strauss SH; Sax JK
    Nat Biotechnol; 2016 May; 34(5):474-7. PubMed ID: 27153272
    [No Abstract]   [Full Text] [Related]  

  • 19. An overview of genetically modified crop governance, issues and challenges in Malaysia.
    Andrew J; Ismail NW; Djama M
    J Sci Food Agric; 2018 Jan; 98(1):12-17. PubMed ID: 28898466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgene expression in sprayed and non-sprayed herbicide-tolerant genetically engineered crops is equivalent.
    Fast BJ; Shan G; Gampala SS; Herman RA
    Regul Toxicol Pharmacol; 2020 Mar; 111():104572. PubMed ID: 31884154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.