These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30897150)
1. Salinity stress drives herbivory rates and selective grazing in subtidal seagrass communities. Bell SY; Fraser MW; Statton J; Kendrick GA PLoS One; 2019; 14(3):e0214308. PubMed ID: 30897150 [TBL] [Abstract][Full Text] [Related]
2. Edge Effects along a Seagrass Margin Result in an Increased Grazing Risk on Posidonia australis Transplants. Statton J; Gustin-Craig S; Dixon KW; Kendrick GA PLoS One; 2015; 10(10):e0137778. PubMed ID: 26465926 [TBL] [Abstract][Full Text] [Related]
3. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species. Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549 [TBL] [Abstract][Full Text] [Related]
4. Driving factors of biogeographical variation in seagrass herbivory. Martínez-Crego B; Prado P; Marco-Méndez C; Fernández-Torquemada Y; Espino F; Sánchez-Lizaso JL; de la Ossa JA; Vilella DM; Machado M; Tuya F Sci Total Environ; 2021 Mar; 758():143756. PubMed ID: 33333301 [TBL] [Abstract][Full Text] [Related]
5. Seagrass tolerance to herbivory under increased ocean temperatures. Garthwin RG; Poore AG; Vergés A Mar Pollut Bull; 2014 Jun; 83(2):475-82. PubMed ID: 23993389 [TBL] [Abstract][Full Text] [Related]
6. Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain. Martínez-Crego B; Vizzini S; Califano G; Massa-Gallucci A; Andolina C; Gambi MC; Santos R Sci Rep; 2020 Mar; 10(1):5103. PubMed ID: 32198395 [TBL] [Abstract][Full Text] [Related]
7. Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? Burkholder DA; Heithaus MR; Fourqurean JW; Wirsing A; Dill LM J Anim Ecol; 2013 Nov; 82(6):1192-202. PubMed ID: 23730871 [TBL] [Abstract][Full Text] [Related]
8. Algal populations controlled by fish herbivory across a wave exposure gradient on southern temperate shores. Taylor DI; Schiel DR Ecology; 2010 Jan; 91(1):201-11. PubMed ID: 20380209 [TBL] [Abstract][Full Text] [Related]
9. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Tomas F; Martínez-Crego B; Hernán G; Santos R Glob Chang Biol; 2015 Nov; 21(11):4021-30. PubMed ID: 26152761 [TBL] [Abstract][Full Text] [Related]
10. Tropicalization shifts herbivore pressure from seagrass to rocky reef communities. Santana-Garcon J; Bennett S; Marbà N; Vergés A; Arthur R; Alcoverro T Proc Biol Sci; 2023 Jan; 290(1990):20221744. PubMed ID: 36629100 [TBL] [Abstract][Full Text] [Related]
11. Recovery of a large herbivore changes regulation of seagrass productivity in a naturally grazed Caribbean ecosystem. Gulick AG; Johnson RA; Pollock CG; Hillis-Starr Z; Bolten AB; Bjorndal KA Ecology; 2020 Dec; 101(12):e03180. PubMed ID: 32882749 [TBL] [Abstract][Full Text] [Related]
12. Meta-Analysis of Reciprocal Linkages between Temperate Seagrasses and Waterfowl with Implications for Conservation. Kollars NM; Henry AK; Whalen MA; Boyer KE; Cusson M; Eklöf JS; Hereu CM; Jorgensen P; Kiriakopolos SL; Reynolds PL; Tomas F; Turner MS; Ruesink JL Front Plant Sci; 2017; 8():2119. PubMed ID: 29312384 [TBL] [Abstract][Full Text] [Related]
13. Green turtle (Chelonia mydas) grazing plot formation creates structural changes in a multi-species Great Barrier Reef seagrass meadow. Scott AL; York PH; Rasheed MA Mar Environ Res; 2020 Dec; 162():105183. PubMed ID: 33065522 [TBL] [Abstract][Full Text] [Related]
14. Plant interactions balance under biotic and abiotic stressors: the importance of herbivory in semi-arid ecosystems. Cock MC; Hierro JL Oecologia; 2020 Dec; 194(4):685-694. PubMed ID: 33094382 [TBL] [Abstract][Full Text] [Related]
15. The commercially important shoemaker spinefoot, Siganus sutor, connects coral reefs to neighbouring seagrass meadows. Ebrahim A; Bijoux JP; Mumby PJ; Tibbetts IR J Fish Biol; 2020 Apr; 96(4):1034-1044. PubMed ID: 32077095 [TBL] [Abstract][Full Text] [Related]
16. Herbivore impacts on marsh production depend upon a compensatory continuum mediated by salinity stress. Long JD; Porturas LD PLoS One; 2014; 9(10):e110419. PubMed ID: 25310475 [TBL] [Abstract][Full Text] [Related]
17. Benthic meiofaunal community response to the cascading effects of herbivory within an algal halo system of the Great Barrier Reef. Ollivier QR; Hammill E; Booth DJ; Madin EMP; Hinchliffe C; Harborne AR; Lovelock CE; Macreadie PI; Atwood TB PLoS One; 2018; 13(3):e0193932. PubMed ID: 29513746 [TBL] [Abstract][Full Text] [Related]
18. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Vergés A; Doropoulos C; Malcolm HA; Skye M; Garcia-Pizá M; Marzinelli EM; Campbell AH; Ballesteros E; Hoey AS; Vila-Concejo A; Bozec YM; Steinberg PD Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13791-13796. PubMed ID: 27849585 [TBL] [Abstract][Full Text] [Related]
19. Loss of predation risk from apex predators can exacerbate marine tropicalization caused by extreme climatic events. Nowicki RJ; Thomson JA; Fourqurean JW; Wirsing AJ; Heithaus MR J Anim Ecol; 2021 Sep; 90(9):2041-2052. PubMed ID: 33624313 [TBL] [Abstract][Full Text] [Related]
20. Molecular level responses to chronic versus pulse nutrient loading in the seagrass Posidonia oceanica undergoing herbivore pressure. Ruocco M; Marín-Guirao L; Ravaglioli C; Bulleri F; Procaccini G Oecologia; 2018 Sep; 188(1):23-39. PubMed ID: 29845353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]