These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30897302)

  • 1. Microscopic Elucidation of Solid-Electrolyte Interphase (SEI) Film Formation via Atomistic Reaction Simulations: Importance of Functional Groups of Electrolyte and Intact Additive Molecules.
    Takenaka N; Nagaoka M
    Chem Rec; 2019 Apr; 19(4):799-810. PubMed ID: 30897302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of cis- versus trans-Configuration of Butylene Carbonate Electrolyte on Microscopic Solid Electrolyte Interphase Formation Processes in Lithium-Ion Batteries.
    Miyazaki K; Takenaka N; Fujie T; Watanabe E; Yamada Y; Yamada A; Nagaoka M
    ACS Appl Mater Interfaces; 2019 May; 11(17):15623-15629. PubMed ID: 30945849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration Effect of Fluoroethylene Carbonate on the Formation of Solid Electrolyte Interphase Layer in Sodium-Ion Batteries.
    Bouibes A; Takenaka N; Fujie T; Kubota K; Komaba S; Nagaoka M
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28525-28532. PubMed ID: 30070476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries.
    Ezzedine M; Zamfir MR; Jardali F; Leveau L; Caristan E; Ersen O; Cojocaru CS; Florea I
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24734-24746. PubMed ID: 34019366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Lithium Bis(oxalate)borate Electrolyte Additive on the Formation of a Solid Electrolyte Interphase on Amorphous Carbon Electrodes by
    Kawaura H; Harada M; Kondo Y; Mizutani M; Takahashi N; Yamada NL
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24526-24535. PubMed ID: 35585036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon.
    Soto FA; Yan P; Engelhard MH; Marzouk A; Wang C; Xu G; Chen Z; Amine K; Liu J; Sprenkle VL; El-Mellouhi F; Balbuena PB; Li X
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28266753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can We See SEI Directly by Naked Eyes?
    Wang M; Liang H; Wang C; Wang A; Song Y; Wang J; Wang B; Wei Y; He X; Yang Y
    Adv Mater; 2023 Dec; 35(51):e2306683. PubMed ID: 37672294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of advanced electrolytes in Na-ion batteries: application of the Red Moon method for molecular structure design of the SEI layer.
    Bouibes A; Takenaka N; Kubota K; Komaba S; Nagaoka M
    RSC Adv; 2021 Dec; 12(2):971-984. PubMed ID: 35425108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism.
    Takenaka N; Bouibes A; Yamada Y; Nagaoka M; Yamada A
    Adv Mater; 2021 Sep; 33(37):e2100574. PubMed ID: 34338349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries.
    Intan NN; Pfaendtner J
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8169-8180. PubMed ID: 33587593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example.
    Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C
    ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Mechanism of LiDFBOP for Improving the Low-Temperature Performance
    Song G; Yi Z; Su F; Xie L; Chen C
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):40042-40052. PubMed ID: 34387458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.
    Li Y; Leung K; Qi Y
    Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy.
    Kim Y; Kim DS; Um JH; Yoon J; Kim JM; Kim H; Yoon WS
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29992-29999. PubMed ID: 30088911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Simulations of the Microstructure Evolution of Solid Electrolyte Interphase during Cyclic Charging/Discharging.
    Yang PY; Pao CW
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5017-5027. PubMed ID: 33467849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic Origin of the Solid Electrolyte Interphase Formation in Fire-Extinguishing Electrolyte: Formation of Pure Inorganic Layer in High Salt Concentration.
    Bouibes A; Takenaka N; Saha S; Nagaoka M
    J Phys Chem Lett; 2019 Oct; 10(19):5949-5955. PubMed ID: 31532220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Stable Solid Electrolyte Interphase for Magnesium Metal Anode Evolved from a Bulky Anion Lithium Salt.
    Tang K; Du A; Dong S; Cui Z; Liu X; Lu C; Zhao J; Zhou X; Cui G
    Adv Mater; 2020 Feb; 32(6):e1904987. PubMed ID: 31850607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries.
    Santner HJ; Korepp C; Winter M; Besenhard JO; Möller KC
    Anal Bioanal Chem; 2004 May; 379(2):266-71. PubMed ID: 14968287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.