These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 30897327)

  • 1. Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis.
    Farney EP; Chapman SJ; Swords WB; Torelli MD; Hamers RJ; Yoon TP
    J Am Chem Soc; 2019 Apr; 141(15):6385-6391. PubMed ID: 30897327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis.
    Kelly CB; Patel NR; Primer DN; Jouffroy M; Tellis JC; Molander GA
    Nat Protoc; 2017 Mar; 12(3):472-492. PubMed ID: 28151464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical cation Diels-Alder cycloadditions by visible light photocatalysis.
    Lin S; Ischay MA; Fry CG; Yoon TP
    J Am Chem Soc; 2011 Dec; 133(48):19350-3. PubMed ID: 22032252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [(DPEPhos)(bcp)Cu]PF6: A General and Broadly Applicable Copper-Based Photoredox Catalyst.
    Baguia H; Deldaele C; Michelet B; Beaudelot J; Theunissen C; Moucheron C; Evano G
    J Vis Exp; 2019 May; (147):. PubMed ID: 31180358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible Light Photoredox Catalysis Using Ruthenium Complexes in Chemical Biology.
    Angerani S; Winssinger N
    Chemistry; 2019 May; 25(27):6661-6672. PubMed ID: 30689234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of visible-light responsive heterogeneous and homogeneous photocatalysts for water oxidation.
    Fukuzumi S; Kato S; Suenobu T
    Phys Chem Chem Phys; 2011 Oct; 13(40):17960-3. PubMed ID: 21931899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Approach to Nitrones through Cascade Reaction of Nitro Compounds Enabled by Visible Light Photoredox Catalysis.
    Lin CW; Hong BC; Chang WC; Lee GH
    Org Lett; 2015 May; 17(10):2314-7. PubMed ID: 25895096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry.
    Ma J; Zhang X; Huang X; Luo S; Meggers E
    Nat Protoc; 2018 Apr; 13(4):605-632. PubMed ID: 29494576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective counter-anions in photoredox catalysis: the asymmetric cation radical Diels-Alder reaction.
    Morse PD; Nguyen TM; Cruz CL; Nicewicz DA
    Tetrahedron; 2018 Jun; 74(26):3266-3272. PubMed ID: 30287974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular Charge Transfer and Ion Pairing in N,N-Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization.
    Lim CH; Ryan MD; McCarthy BG; Theriot JC; Sartor SM; Damrauer NH; Musgrave CB; Miyake GM
    J Am Chem Soc; 2017 Jan; 139(1):348-355. PubMed ID: 27973788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A General Copper-based Photoredox Catalyst for Organic Synthesis: Scope, Application in Natural Product Synthesis and Mechanistic Insights.
    Deldaele C; Michelet B; Baguia H; Kajouj S; Romero E; Moucheron C; Evano G
    Chimia (Aarau); 2018 Sep; 72(9):621-629. PubMed ID: 30257738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Modification of Dehydrated Amino Acids in Natural Antimicrobial Peptides by Photoredox Catalysis.
    de Bruijn AD; Roelfes G
    Chemistry; 2018 Aug; 24(44):11314-11318. PubMed ID: 29939448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New approach to oximes through reduction of nitro compounds enabled by visible light photoredox catalysis.
    Cai S; Zhang S; Zhao Y; Wang DZ
    Org Lett; 2013 Jun; 15(11):2660-3. PubMed ID: 23706186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
    Staveness D; Bosque I; Stephenson CR
    Acc Chem Res; 2016 Oct; 49(10):2295-2306. PubMed ID: 27529484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic fluoroalkylation reactions of organic compounds.
    Barata-Vallejo S; Bonesi SM; Postigo A
    Org Biomol Chem; 2015 Dec; 13(46):11153-83. PubMed ID: 26464314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-induced imine reduction by a photoredox biocatalyst consisting of a pentapeptide and a Ru bipyridine terpyridine complex.
    Kano R; Oohora K; Hayashi T
    J Inorg Biochem; 2024 Oct; 259():112657. PubMed ID: 38981409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant.
    Fabry DC; Ronge MA; Zoller J; Rueping M
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2801-5. PubMed ID: 25644740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.