These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30897329)

  • 1. Systematic Evaluation of Genetic and Environmental Factors Affecting Performance of Translational Riboswitches.
    Kent R; Dixon N
    ACS Synth Biol; 2019 Apr; 8(4):884-901. PubMed ID: 30897329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional control of gene expression by synthetic riboswitches in Streptomyces coelicolor.
    Rudolph MM; Vockenhuber MP; Suess B
    Methods Enzymol; 2015; 550():283-99. PubMed ID: 25605391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Theophylline-Responsive Riboswitch Regulates Expression of Nuclear-Encoded Genes.
    Shanidze N; Lenkeit F; Hartig JS; Funck D
    Plant Physiol; 2020 Jan; 182(1):123-135. PubMed ID: 31704721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Engineered PreQ1 Riboswitches for Inducible Gene Regulation in Mycobacteria.
    Van Vlack ER; Topp S; Seeliger JC
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch.
    Cui W; Han L; Cheng J; Liu Z; Zhou L; Guo J; Zhou Z
    Microb Cell Fact; 2016 Nov; 15(1):199. PubMed ID: 27876054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs.
    Deigan KE; Ferré-D'Amaré AR
    Acc Chem Res; 2011 Dec; 44(12):1329-38. PubMed ID: 21615107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboswitch distribution, structure, and function in bacteria.
    Pavlova N; Kaloudas D; Penchovsky R
    Gene; 2019 Aug; 708():38-48. PubMed ID: 31128223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing Riboswitch-Mediated Gene Regulatory Controls in Thermophilic Bacteria.
    Marcano-Velazquez JG; Lo J; Nag A; Maness PC; Chou KJ
    ACS Synth Biol; 2019 Apr; 8(4):633-640. PubMed ID: 30943368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Riboswitches in Vivo Using Dual Genetic Selection and Fluorescence-Activated Cell Sorting.
    Page K; Shaffer J; Lin S; Zhang M; Liu JM
    ACS Synth Biol; 2018 Sep; 7(9):2000-2006. PubMed ID: 30119599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riboswitch-Based Reversible Dual Color Sensor.
    Harbaugh SV; Goodson MS; Dillon K; Zabarnick S; Kelley-Loughnane N
    ACS Synth Biol; 2017 May; 6(5):766-781. PubMed ID: 28121427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor.
    Rudolph MM; Vockenhuber MP; Suess B
    Microbiology (Reading); 2013 Jul; 159(Pt 7):1416-1422. PubMed ID: 23676435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected versatility in bacterial riboswitches.
    Mellin JR; Cossart P
    Trends Genet; 2015 Mar; 31(3):150-6. PubMed ID: 25708284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond Plug and Pray: Context Sensitivity and
    Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M
    RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942.
    Nakahira Y; Ogawa A; Asano H; Oyama T; Tozawa Y
    Plant Cell Physiol; 2013 Oct; 54(10):1724-35. PubMed ID: 23969558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creation of Architecturally Minimal Transcriptionally Activating Riboswitches Responsive to Theophylline Reveals an Unconventional Design Strategy.
    Cui W; Lin Q; Wu Y; Wang X; Zhang Y; Lin X; Zhang L; Liu X; Han L; Zhou Z
    ACS Synth Biol; 2023 Dec; 12(12):3716-3729. PubMed ID: 38052004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive characterization of a theophylline riboswitch reveals two pivotal features of Shine-Dalgarno influencing activated translation property.
    Cui W; Cheng J; Miao S; Zhou L; Liu Z; Guo J; Zhou Z
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2107-2120. PubMed ID: 27986992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the Performance of Synthetic Riboswitches using Machine Learning.
    Groher AC; Jager S; Schneider C; Groher F; Hamacher K; Suess B
    ACS Synth Biol; 2019 Jan; 8(1):34-44. PubMed ID: 30513199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic dissection of regulation by a repressing and novel activating corrinoid riboswitch enables engineering of synthetic riboswitches.
    Procknow RR; Kennedy KJ; Kluba M; Rodriguez LJ; Taga ME
    mBio; 2023 Oct; 14(5):e0158823. PubMed ID: 37823641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.