These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 30897336)
21. Pseudomonas umsongensis GO16 as a platform for the in vivo synthesis of short and medium chain length polyhydroxyalkanoate blends. Cerrone F; Zhou B; Mouren A; Avérous L; Conroy S; Simpson JC; O'Connor KE; Narancic T Bioresour Technol; 2023 Nov; 387():129668. PubMed ID: 37572888 [TBL] [Abstract][Full Text] [Related]
22. Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Cai L; Yuan MQ; Liu F; Jian J; Chen GQ Bioresour Technol; 2009 Apr; 100(7):2265-70. PubMed ID: 19103481 [TBL] [Abstract][Full Text] [Related]
23. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. Kim DY; Kim HW; Chung MG; Rhee YH J Microbiol; 2007 Apr; 45(2):87-97. PubMed ID: 17483792 [TBL] [Abstract][Full Text] [Related]
24. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. Cerrone F; Davis R; Kenny ST; Woods T; O'Donovan A; Gupta VK; Tuohy M; Babu RP; O'Kiely P; O'Connor K Bioresour Technol; 2015 Sep; 191():45-52. PubMed ID: 25978856 [TBL] [Abstract][Full Text] [Related]
25. Biochemical evidence that phaZ gene encodes a specific intracellular medium chain length polyhydroxyalkanoate depolymerase in Pseudomonas putida KT2442: characterization of a paradigmatic enzyme. de Eugenio LI; Garci A P; Luengo JM; Sanz JSM; Roma N JS; Garci A JL; Prieto MAA J Biol Chem; 2007 Feb; 282(7):4951-4962. PubMed ID: 17170116 [TBL] [Abstract][Full Text] [Related]
26. Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida. Arias S; Bassas-Galia M; Molinari G; Timmis KN Microb Biotechnol; 2013 Sep; 6(5):551-63. PubMed ID: 23445364 [TBL] [Abstract][Full Text] [Related]
27. Preparation and characterization of polyhydroxyalkanoates macroporous scaffold through enzyme-mediated modifications. Ansari NF; Amirul AA Appl Biochem Biotechnol; 2013 Jun; 170(3):690-709. PubMed ID: 23604967 [TBL] [Abstract][Full Text] [Related]
28. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates). Jaeger KE; Steinbüchel A; Jendrossek D Appl Environ Microbiol; 1995 Aug; 61(8):3113-8. PubMed ID: 7487042 [TBL] [Abstract][Full Text] [Related]
29. Extracellular degradation of medium chain length poly(beta-hydroxyalkanoates) by Comamonas sp. Quinteros R; Goodwin S; Lenz RW; Park WH Int J Biol Macromol; 1999; 25(1-3):135-43. PubMed ID: 10416660 [TBL] [Abstract][Full Text] [Related]
30. Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Zhao F; Gong T; Liu X; Fan X; Huang R; Ma T; Wang S; Gao W; Yang C Appl Microbiol Biotechnol; 2019 Feb; 103(4):1713-1724. PubMed ID: 30610286 [TBL] [Abstract][Full Text] [Related]
31. A study on the relation between poly(3-hydroxybutyrate) depolymerases or oligomer hydrolases and molecular weight of polyhydroxyalkanoates accumulating in Cupriavidus necator H16. Arikawa H; Sato S; Fujiki T; Matsumoto K J Biotechnol; 2016 Jun; 227():94-102. PubMed ID: 27059479 [TBL] [Abstract][Full Text] [Related]
32. Degradation kinetics of medium chain length Polyhydroxyalkanoate degrading enzyme: a quartz crystal microbalance study. Millan F; Hanik N Front Bioeng Biotechnol; 2023; 11():1303267. PubMed ID: 38162181 [TBL] [Abstract][Full Text] [Related]
33. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Pereira JR; Araújo D; Marques AC; Neves LA; Grandfils C; Sevrin C; Alves VD; Fortunato E; Reis MAM; Freitas F Int J Biol Macromol; 2019 Feb; 122():1144-1151. PubMed ID: 30219510 [TBL] [Abstract][Full Text] [Related]
34. [Biodegradation of polyhydroxyalkanoates by soil microbiocoenoses of different structures and detection of microorganisms-destructors]. Boiandin AN; Prudnikova SV; Filipenko ML; Khrapov EA; Vasil'ev AD; Volova TG Prikl Biokhim Mikrobiol; 2012; 48(1):35-44. PubMed ID: 22567883 [TBL] [Abstract][Full Text] [Related]
35. The effect of polyhydroxyalkanoates in Ghergab A; Mohanan N; Saliga G; Brassinga AKC; Levin D; de Kievit T Can J Microbiol; 2021 Jun; 67(6):476-490. PubMed ID: 34057367 [No Abstract] [Full Text] [Related]
36. Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability. Volova TG; Prudnikova SV; Vinogradova ON; Syrvacheva DA; Shishatskaya EI Microb Ecol; 2017 Feb; 73(2):353-367. PubMed ID: 27623963 [TBL] [Abstract][Full Text] [Related]
37. Influence of growth stage on activities of polyhydroxyalkanoate (PHA) polymerase and PHA depolymerase in Pseudomonas putida U. Ren Q; de Roo G; Witholt B; Zinn M; Thöny-Meyer L BMC Microbiol; 2010 Oct; 10():254. PubMed ID: 20937103 [TBL] [Abstract][Full Text] [Related]
38. Molecular characterization of Pseudomonas sp. LDC-5 involved in accumulation of poly 3-hydroxybutyrate and medium-chain-length poly 3-hydroxyalkanoates. Sujatha K; Mahalakshmi A; Shenbagarathai R Arch Microbiol; 2007 Nov; 188(5):451-62. PubMed ID: 17653530 [TBL] [Abstract][Full Text] [Related]
39. Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. Możejko J; Ciesielski S J Biosci Bioeng; 2013 Oct; 116(4):485-92. PubMed ID: 23706994 [TBL] [Abstract][Full Text] [Related]
40. Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Chanasit W; Hodgson B; Sudesh K; Umsakul K Biosci Biotechnol Biochem; 2016 Jul; 80(7):1440-50. PubMed ID: 26981955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]