These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30897400)

  • 1. Self-assembly of chlorin-e6 on γ-Fe
    Magro M; Bramuzzo S; Baratella D; Ugolotti J; Zoppellaro G; Chemello G; Olivotto I; Ballarin C; Radaelli G; Arcaro B; De Liguoro M; Coppellotti O; Guidolin L; de Almeida Roger J; Bonaiuto E; Zboril R; Vianello F
    J Photochem Photobiol B; 2019 May; 194():21-31. PubMed ID: 30897400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).
    Muthukumaran U; Govindarajan M; Rajeswary M
    Parasitol Res; 2015 Mar; 114(3):989-99. PubMed ID: 25544703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial and magnetically removable tannic acid nanocarrier: A processing aid for Listeria monocytogenes treatment for food industry applications.
    de Almeida Roger J; Magro M; Spagnolo S; Bonaiuto E; Baratella D; Fasolato L; Vianello F
    Food Chem; 2018 Nov; 267():430-436. PubMed ID: 29934188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L.
    Sundararajan B; Ranjitha Kumari BD
    J Trace Elem Med Biol; 2017 Sep; 43():187-196. PubMed ID: 28341392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larvicidal activity of ajowan ( Trachyspermum ammi ) and Peru balsam ( Myroxylon pereira ) oils and blends of their constituents against mosquito, Aedes aegypti , acute toxicity on water flea, Daphnia magna , and aqueous residue.
    Seo SM; Park HM; Park IK
    J Agric Food Chem; 2012 Jun; 60(23):5909-14. PubMed ID: 22620984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.
    Santhosh SB; Ragavendran C; Natarajan D
    J Photochem Photobiol B; 2015 Dec; 153():184-90. PubMed ID: 26410042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue.
    Park HM; Kim J; Chang KS; Kim BS; Yang YJ; Kim GH; Shin SC; Park IK
    J Med Entomol; 2011 Mar; 48(2):405-10. PubMed ID: 21485381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical composition and larvicidal activities of Azolla pinnata extracts against Aedes (Diptera:Culicidae).
    Ravi R; Zulkrnin NSH; Rozhan NN; Nik Yusoff NR; Mat Rasat MS; Ahmad MI; Ishak IH; Amin MFM
    PLoS One; 2018; 13(11):e0206982. PubMed ID: 30399167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecotoxicity and environmental risk assessment of larvicides used in the control of Aedes aegypti to Daphnia magna (Crustacea, Cladocera).
    Abe FR; Coleone AC; Machado AA; Gonçalves Machado-Neto J
    J Toxicol Environ Health A; 2014; 77(1-3):37-45. PubMed ID: 24555645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae).
    Suresh U; Murugan K; Benelli G; Nicoletti M; Barnard DR; Panneerselvam C; Kumar PM; Subramaniam J; Dinesh D; Chandramohan B
    Parasitol Res; 2015 Apr; 114(4):1551-62. PubMed ID: 25669140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The surface reactivity of iron oxide nanoparticles as a potential hazard for aquatic environments: A study on Daphnia magna adults and embryos.
    Magro M; De Liguoro M; Franzago E; Baratella D; Vianello F
    Sci Rep; 2018 Aug; 8(1):13017. PubMed ID: 30158568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimosquito property of Petroselinum crispum (Umbellifereae) against the pyrethroid resistant and susceptible strains of Aedes aegypti (Diptera: Culicidae).
    Intirach J; Junkum A; Lumjuan N; Chaithong U; Jitpakdi A; Riyong D; Wannasan A; Champakaew D; Muangmoon R; Chansang A; Pitasawat B
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):23994-24008. PubMed ID: 27638800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors.
    de Carvalho GHF; de Andrade MA; de Araújo CN; Santos ML; de Castro NA; Charneau S; Monnerat R; de Santana JM; Bastos IMD
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5514-5523. PubMed ID: 30610586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorin e6 combined with albumin nanoparticles as a potential composite photosensitizer for photodynamic therapy of tumors.
    Shton IO; Sarnatskaya VV; Prokopenko IV; Gamaleia NF
    Exp Oncol; 2015 Dec; 37(4):250-4. PubMed ID: 26710836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors.
    Kumar D; Kumar G; Agrawal V
    Parasitol Res; 2018 Feb; 117(2):377-389. PubMed ID: 29250727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.
    Magro M; Martinello T; Bonaiuto E; Gomiero C; Baratella D; Zoppellaro G; Cozza G; Patruno M; Zboril R; Vianello F
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2802-2810. PubMed ID: 28778487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst.
    Magro M; Baratella D; Salviulo G; Polakova K; Zoppellaro G; Tucek J; Kaslik J; Zboril R; Vianello F
    Biosens Bioelectron; 2014 Feb; 52():159-65. PubMed ID: 24041662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella.
    Roni M; Murugan K; Panneerselvam C; Subramaniam J; Nicoletti M; Madhiyazhagan P; Dinesh D; Suresh U; Khater HF; Wei H; Canale A; Alarfaj AA; Munusamy MA; Higuchi A; Benelli G
    Ecotoxicol Environ Saf; 2015 Nov; 121():31-8. PubMed ID: 26184431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria.
    Ishwarya R; Vaseeharan B; Anuradha R; Rekha R; Govindarajan M; Alharbi NS; Kadaikunnan S; Khaled JM; Benelli G
    J Photochem Photobiol B; 2017 Sep; 174():133-143. PubMed ID: 28772238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HPTLC analysis of Scoparia dulcis Linn (Scrophulariaceae) and its larvicidal potential against dengue vector Aedes aegypti.
    Wankhar W; Srinivasan S; Rathinasamy S
    Nat Prod Res; 2015; 29(18):1757-60. PubMed ID: 25573588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.