These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30897402)

  • 1. Dependence between the vibration characteristics of the proton exchange membrane fuel cell and the stack structural feature.
    Ahn S; Koh H; Lee J; Park J
    Environ Res; 2019 Jun; 173():48-53. PubMed ID: 30897402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Five-in-One Microsensor for Real-Time Wireless Microscopic Diagnosis inside Electric Motorcycle Fuel Cell Stack Range Extender.
    Lee CY; Chen CH; Lee TJ; Cheong JS; Liu YC; Chen YC
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automotive Subzero Cold-Start Quasi-Adiabatic Proton Exchange Membrane Fuel Cell Fixture: Design and Validation.
    Pistono AO; Rice CA
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32204539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.
    Li J; Wang Z; Li J; Pan M; Tang H
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1181-93. PubMed ID: 24749421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and Experimental Analysis of DVA on the Flexible-Rigid Rail Vehicle Carbody Resonant Vibration.
    Sharma SK; Sharma RC; Lee J; Jang HL
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.
    Lee CY; Weng FB; Kuo YW; Tsai CH; Cheng YT; Cheng CK; Lin JT
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency measurement and uncertainty discussion of an electric engine powered by a "self-breathing" and "self-humidified" proton exchange membrane fuel cell.
    Schiavetti P; Del Prete Z
    Rev Sci Instrum; 2007 Aug; 78(8):085107. PubMed ID: 17764355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.
    Lee CY; Chan PC; Lee CJ
    Sensors (Basel); 2010; 10(12):11605-17. PubMed ID: 22163545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.
    Lee CY; Fan WY; Hsieh WJ
    Sensors (Basel); 2010; 10(7):6395-405. PubMed ID: 22163556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite Time Thermodynamic Modeling and Performance Analysis of High-Temperature Proton Exchange Membrane Fuel Cells.
    Li D; Ma Z; Shao W; Li Y; Guo X
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Work Efficiency and Economic Efficiency of Actual Driving Test of Proton Exchange Membrane Fuel Cell Forklift.
    Xiong Z; Zhou H; Wu X; Chan SH; Xie Z; Dang D
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and numerical investigations of vibration characteristics for parallel-type and series-type triple-layered piezoceramic bimorphs.
    Huang YH; Ma CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2598-611. PubMed ID: 20040397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The feasibility of modal testing for measurement of the dynamic characteristics of goat vertebral motion segments.
    van Engelen SJ; van der Veen AJ; de Boer A; Ellenbroek MH; Smit TH; van Royen BJ; van Dieën JH
    J Biomech; 2011 May; 44(8):1478-83. PubMed ID: 21450293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Ship Vibration Effects on the Gas Distribution and Output Voltage of a Proton Exchange Membrane Fuel Cell.
    Xiaofei W; Yang Q; Zhigang Z; Liusheng X
    ACS Omega; 2022 Jun; 7(24):20569-20583. PubMed ID: 35935284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technoeconomic modelling and environmental assessment of a modern PEMFC CHP system: a case study of an eco-house at University of Nottingham.
    Sui S; Rasheed R; Li Q; Su Y; Riffat S
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29883-29895. PubMed ID: 31410831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.
    Zamora H; Plaza J; Cañizares P; Lobato J; Rodrigo MA
    ChemSusChem; 2016 May; 9(10):1187-93. PubMed ID: 27076055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Design of mechanical structure dynamic characteristics and development of verification system].
    Ma AJ; Li C; Liu HY; Feng XM; Huang XH; Lu LJ
    Space Med Med Eng (Beijing); 2005 Apr; 18(2):140-3. PubMed ID: 15977395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.
    Wang GL; Wang Y; Shi JH; Shao HH
    ISA Trans; 2010 Jan; 49(1):87-94. PubMed ID: 19781698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Fuel Cell Stack Performance Attenuation and Individual Cell Voltage Uniformity Based on the Durability Cycle Condition.
    Shen C; Xu S; Gao Y
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33917663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles.
    Whiston MM; Azevedo IL; Litster S; Whitefoot KS; Samaras C; Whitacre JF
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4899-4904. PubMed ID: 30804192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.