These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 30897471)
1. Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil. Rani R; Kumar V; Usmani Z; Gupta P; Chandra A Chemosphere; 2019 Jun; 225():479-489. PubMed ID: 30897471 [TBL] [Abstract][Full Text] [Related]
2. Effect of endosulfan tolerant bacterial isolates (Delftia lacustris IITISM30 and Klebsiella aerogenes IITISM42) with Helianthus annuus on remediation of endosulfan from contaminated soil. Rani R; Kumar V; Gupta P; Chandra A Ecotoxicol Environ Saf; 2019 Jan; 168():315-323. PubMed ID: 30390530 [TBL] [Abstract][Full Text] [Related]
3. Potential use of Solanum lycopersicum and plant growth promoting rhizobacterial (PGPR) strains for the phytoremediation of endosulfan stressed soil. Rani R; Kumar V; Gupta P; Chandra A Chemosphere; 2021 Sep; 279():130589. PubMed ID: 33894513 [TBL] [Abstract][Full Text] [Related]
4. Endosulfan Degradation by Selected Strains of Plant Growth Promoting Rhizobacteria. Rani R; Kumar V Bull Environ Contam Toxicol; 2017 Jul; 99(1):138-145. PubMed ID: 28484804 [TBL] [Abstract][Full Text] [Related]
5. Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Mitton FM; Gonzalez M; Monserrat JM; Miglioranza KS Chemosphere; 2016 Apr; 148():300-6. PubMed ID: 26814704 [TBL] [Abstract][Full Text] [Related]
7. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
8. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Prapagdee B; Chanprasert M; Mongkolsuk S Chemosphere; 2013 Jul; 92(6):659-66. PubMed ID: 23478127 [TBL] [Abstract][Full Text] [Related]
9. A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.). Gupta P; Kumar V; Usmani Z; Rani R; Chandra A; Gupta VK J Hazard Mater; 2019 Sep; 377():391-398. PubMed ID: 31173990 [TBL] [Abstract][Full Text] [Related]
10. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
11. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Afzal M; Yousaf S; Reichenauer TG; Sessitsch A Int J Phytoremediation; 2012 Jan; 14(1):35-47. PubMed ID: 22567693 [TBL] [Abstract][Full Text] [Related]
12. Phytoextraction of endosulfan a remediation technique. Mukherjee I; Kumar A Bull Environ Contam Toxicol; 2012 Feb; 88(2):250-4. PubMed ID: 22052137 [TBL] [Abstract][Full Text] [Related]
13. The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.). Bahadur A; Ahmad R; Afzal A; Feng H; Suthar V; Batool A; Khan A; Mahmood-Ul-Hassan M Chemosphere; 2017 Jul; 179():112-119. PubMed ID: 28364646 [TBL] [Abstract][Full Text] [Related]
14. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Liu D; Yang Q; Ge K; Hu X; Qi G; Du B; Liu K; Ding Y Braz J Microbiol; 2017; 48(4):656-670. PubMed ID: 28645648 [TBL] [Abstract][Full Text] [Related]
15. Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. Ahmad F; Iqbal S; Anwar S; Afzal M; Islam E; Mustafa T; Khan QM J Hazard Mater; 2012 Oct; 237-238():110-5. PubMed ID: 22959266 [TBL] [Abstract][Full Text] [Related]
16. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. Rajkumar M; Ma Y; Freitas H J Basic Microbiol; 2008 Dec; 48(6):500-8. PubMed ID: 18785659 [TBL] [Abstract][Full Text] [Related]
17. Effects of organochlorine pesticides on plant growth-promoting traits of phosphate-solubilizing rhizobacterium, Paenibacillus sp. IITISM08. Rani R; Usmani Z; Gupta P; Chandra A; Das A; Kumar V Environ Sci Pollut Res Int; 2018 Feb; 25(6):5668-5680. PubMed ID: 29230644 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation potential of Helianthus annuus L in sewage-irrigated Indo-Gangetic alluvial soils. Mani D; Sharma B; Kumar C; Pathak N; Balak S Int J Phytoremediation; 2012 Mar; 14(3):235-46. PubMed ID: 22567708 [TBL] [Abstract][Full Text] [Related]
19. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248 [TBL] [Abstract][Full Text] [Related]
20. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]