BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30897525)

  • 1. Microarray-based data mining reveals key genes and potential therapeutic drugs for Cadmium-induced prostate cell malignant transformation.
    Xiang Y; Zhang L; Huang Y; Ling J; Zhuo W
    Environ Toxicol Pharmacol; 2019 May; 68():141-147. PubMed ID: 30897525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of key genes and prediction of therapeutic agents in Arsenic-induced lung carcinoma.
    Zhang L; Huang Y; Ling J; Xiang Y; Zhuo W
    Cancer Biomark; 2019; 25(4):351-360. PubMed ID: 31322542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of prostate cancer hub genes and therapeutic agents using bioinformatics approach.
    Fang E; Zhang X; Wang Q; Wang D
    Cancer Biomark; 2017 Dec; 20(4):553-561. PubMed ID: 28800317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Characterization of Cadmium-Related Genes in Liver Carcinoma.
    Zhang L; Huang Y; Zhu Y; Yu Z; Shao M; Luo Y
    Biol Trace Elem Res; 2018 Apr; 182(2):238-247. PubMed ID: 28791617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of key genes and pathways and therapeutic agents in cadmium-treated liver cells: A bioinformatics study.
    Zhang L; Huang Y; Yu Z; Shao M; Luo Y; Zhu Y
    Environ Toxicol Pharmacol; 2017 Dec; 56():145-150. PubMed ID: 28934692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of miR-452-5p in the tumorigenesis of prostate cancer: A study based on the Cancer Genome Atl(TCGA), Gene Expression Omnibus (GEO), and bioinformatics analysis.
    Gao L; Zhang LJ; Li SH; Wei LL; Luo B; He RQ; Xia S
    Pathol Res Pract; 2018 May; 214(5):732-749. PubMed ID: 29559248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling of differentially expressed genes in cadmium-induced prostate carcinogenesis.
    Kolluru V; Tyagi A; Chandrasekaran B; Damodaran C
    Toxicol Appl Pharmacol; 2019 Jul; 375():57-63. PubMed ID: 31082426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of hub genes and prediction of putative drugs in arsenic-related bladder carcinoma: An in silico study.
    Zhang L; Zhou Y; Zhang J; Chang A; Zhuo X
    J Trace Elem Med Biol; 2020 Dec; 62():126609. PubMed ID: 32663744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of key genes in prostate cancer gene expression profile by bioinformatics.
    Lu W; Ding Z
    Andrologia; 2019 Feb; 51(1):e13169. PubMed ID: 30311263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TXNIP, CXCL1, and AREG as key genes in formaldehyde-induced head and neck carcinoma: an in silico analysis.
    Ling J; Chang A; Ye H; Zhao H; Zhuo X
    Inhal Toxicol; 2021 Feb; 33(3):113-120. PubMed ID: 33821754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.
    Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G
    Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer.
    Ye Y; Li SL; Wang SY
    PLoS One; 2018; 13(8):e0198055. PubMed ID: 30138363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening and function analysis of hub genes and pathways in hepatocellular carcinoma via bioinformatics approaches.
    Zhang L; Huang Y; Ling J; Zhuo W; Yu Z; Shao M; Luo Y; Zhu Y
    Cancer Biomark; 2018; 22(3):511-521. PubMed ID: 29843214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis.
    Li T; Gao X; Han L; Yu J; Li H
    World J Surg Oncol; 2018 Jun; 16(1):114. PubMed ID: 29921304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell sequencing reveals MYC targeting gene MAD2L1 is associated with prostate cancer bone metastasis tumor dormancy.
    Wang X; Yu J; Yan J; Peng K; Zhou H
    BMC Urol; 2022 Mar; 22(1):37. PubMed ID: 35305591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs-mRNAs Expression Profile and Their Potential Role in Malignant Transformation of Human Bronchial Epithelial Cells Induced by Cadmium.
    Liu Q; Zheng C; Shen H; Zhou Z; Lei Y
    Biomed Res Int; 2015; 2015():902025. PubMed ID: 26504844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway crosstalk analysis in prostate cancer based on protein-protein network data.
    Li HY; Jin N; Han YP; Jin XF
    Neoplasma; 2017; 64(1):22-31. PubMed ID: 27881001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential role of microRNA‑223‑3p in the tumorigenesis of hepatocellular carcinoma: A comprehensive study based on data mining and bioinformatics.
    Zhang R; Zhang LJ; Yang ML; Huang LS; Chen G; Feng ZB
    Mol Med Rep; 2018 Feb; 17(2):2211-2228. PubMed ID: 29207133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and bioinformatics mechanistic-based approach for cadmium carcinogenicity understanding.
    Oldani M; Fabbri M; Melchioretto P; Callegaro G; Fusi P; Gribaldo L; Forcella M; Urani C
    Toxicol In Vitro; 2020 Jun; 65():104757. PubMed ID: 31904401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying differentially expressed genes and small molecule drugs for prostate cancer by a bioinformatics strategy.
    Li J; Xu YH; Lu Y; Ma XP; Chen P; Luo SW; Jia ZG; Liu Y; Guo Y
    Asian Pac J Cancer Prev; 2013; 14(9):5281-6. PubMed ID: 24175814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.