BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30897620)

  • 1. Hyaluronan Derived From the Limbus is a Key Regulator of Corneal Lymphangiogenesis.
    Sun M; Puri S; Mutoji KN; Coulson-Thomas YM; Hascall VC; Jackson DG; Gesteira TF; Coulson-Thomas VJ
    Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):1050-1062. PubMed ID: 30897620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation.
    Gesteira TF; Sun M; Coulson-Thomas YM; Yamaguchi Y; Yeh LK; Hascall V; Coulson-Thomas VJ
    Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4407-4421. PubMed ID: 28863216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lymphatic vessels correlate closely with inflammation index in alkali burned cornea.
    Yan H; Qi C; Ling S; Li W; Liang L
    Curr Eye Res; 2010 Aug; 35(8):685-97. PubMed ID: 20673045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: an overview of two common animal models of corneal neovascularization.
    Giacomini C; Ferrari G; Bignami F; Rama P
    Exp Eye Res; 2014 Apr; 121():1-4. PubMed ID: 24560796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyaluronan promotes tumor lymphangiogenesis and intralymphantic tumor growth in xenografts.
    Guo LX; Zou K; Ju JH; Xie H
    Acta Biochim Biophys Sin (Shanghai); 2005 Sep; 37(9):601-6. PubMed ID: 16143814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crucial role of corneal lymphangiogenesis for allograft rejection in alkali-burned cornea bed.
    Ling S; Qi C; Li W; Xu J; Kuang W
    Clin Exp Ophthalmol; 2009 Dec; 37(9):874-83. PubMed ID: 20092597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EphrinB2-EphB4 signals regulate formation and maintenance of funnel-shaped valves in corneal lymphatic capillaries.
    Katsuta H; Fukushima Y; Maruyama K; Hirashima M; Nishida K; Nishikawa S; Uemura A
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4102-8. PubMed ID: 23696610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyaluronan-induced VEGF-C promotes fibrosis-induced lymphangiogenesis via Toll-like receptor 4-dependent signal pathway.
    Jung YJ; Lee AS; Nguyen-Thanh T; Kang KP; Lee S; Jang KY; Kim MK; Kim SH; Park SK; Kim W
    Biochem Biophys Res Commun; 2015 Oct; 466(3):339-45. PubMed ID: 26362177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGFβ counteracts LYVE-1-mediated induction of lymphangiogenesis by small hyaluronan oligosaccharides.
    Bauer J; Rothley M; Schmaus A; Quagliata L; Ehret M; Biskup M; Orian-Rousseau V; Jackson DG; Pettis RJ; Harvey A; Bräse S; Thiele W; Sleeman JP
    J Mol Med (Berl); 2018 Feb; 96(2):199-209. PubMed ID: 29282520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of new lymphatic vessels in alkali-burned corneas.
    Ling S; Lin H; Liang L; Xu J; Xu C; Zhao W; Liu Z
    Acta Ophthalmol; 2009 May; 87(3):315-22. PubMed ID: 18811642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammation, vascularization and goblet cell differences in LSCD: Validating animal models of corneal alkali burns.
    Kethiri AR; Raju E; Bokara KK; Mishra DK; Basu S; Rao CM; Sangwan VS; Singh V
    Exp Eye Res; 2019 Aug; 185():107665. PubMed ID: 31095932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of activated omental cells on rat limbal corneal alkali injury.
    Bu P; Vin AP; Sethupathi P; Ambrecht LA; Zhai Y; Nikolic N; Qiao L; Bouchard CS
    Exp Eye Res; 2014 Apr; 121():143-6. PubMed ID: 24582890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of corneal injury models in dual fluorescent reporter transgenic mice to understand the roles of the cornea and limbus in angiogenic and lymphangiogenic privilege.
    Gao X; Guo K; Santosa SM; Montana M; Yamakawa M; Hallak JA; Han KY; Doh SJ; Rosenblatt MI; Chang JH; Azar DT
    Sci Rep; 2019 Aug; 9(1):12331. PubMed ID: 31444394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential distribution of blood and lymphatic vessels in the murine cornea.
    Ecoiffier T; Yuen D; Chen L
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2436-40. PubMed ID: 20019372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in murine limbal lymphatic vessels and corneal lymphangiogenesis.
    Hos D; Bachmann B; Bock F; Onderka J; Cursiefen C
    Exp Eye Res; 2008 Nov; 87(5):427-32. PubMed ID: 18755186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyaluronic acid-dependent protection against alkali-burned human corneal cells.
    Wu CL; Chou HC; Li JM; Chen YW; Chen JH; Chen YH; Chan HL
    Electrophoresis; 2013 Feb; 34(3):388-96. PubMed ID: 23161167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots.
    Nakao S; Zandi S; Faez S; Kohno R; Hafezi-Moghadam A
    FASEB J; 2012 Feb; 26(2):808-17. PubMed ID: 22090317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropilin-2 contributes to LPS-induced corneal inflammatory lymphangiogenesis.
    Tang X; Sun J; Du L; Du H; Wang L; Mai J; Zhang F; Liu P
    Exp Eye Res; 2016 Feb; 143():110-9. PubMed ID: 26500194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The side population cells in the rabbit limbus sensitively increased in response to the central cornea wounding.
    Park KS; Lim CH; Min BM; Lee JL; Chung HY; Joo CK; Park CW; Son Y
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):892-900. PubMed ID: 16505021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Lymphangiogenesis and Hemangiogenesis in Corneal Inflammation by Subconjunctival Prox1 siRNA Injection in Rats.
    Rho CR; Choi JS; Seo M; Lee SK; Joo CK
    Invest Ophthalmol Vis Sci; 2015 Sep; 56(10):5871-9. PubMed ID: 26348636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.