These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30897809)

  • 1. Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States.
    Pühringer G; Jakoby B
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30897809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Different Metals on the Performance of Slab Tamm Plasmon Resonators.
    Pühringer G; Consani C; Jakoby B
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a Slab Tamm Plasmon Resonator Coupled to a Multistrip Array Waveguide for the Mid Infrared.
    Pühringer G; Consani C; Jannesari R; Fleury C; Dubois F; Spettel J; Dao TD; Stocker G; Grille T; Jakoby B
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced Tamm plasmon.
    Zhu H; Luo H; Li Q; Zhao D; Cai L; Du K; Xu Z; Ghosh P; Qiu M
    Opt Lett; 2018 Nov; 43(21):5230-5233. PubMed ID: 30382974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance narrowband thermal emitter based on aperiodic Tamm plasmon structures assisted by inverse design.
    Qiu Q; Zhou D; Zhang J; Tan C; Xu Q; Zhang Z; Wen Z; Sun Y; Dai N; Hao J
    Opt Lett; 2023 Nov; 48(22):6000-6003. PubMed ID: 37966773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices.
    Pusch A; De Luca A; Oh SS; Wuestner S; Roschuk T; Chen Y; Boual S; Ali Z; Phillips CC; Hong M; Maier SA; Udrea F; Hopper RH; Hess O
    Sci Rep; 2015 Dec; 5():17451. PubMed ID: 26639902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kirchhoff's metasurfaces towards efficient photo-thermal energy conversion.
    Nishijima Y; Balčytis A; Naganuma S; Seniutinas G; Juodkazis S
    Sci Rep; 2019 Jun; 9(1):8284. PubMed ID: 31164675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the potential of broadband Tamm plasmon resonance for enhanced photodetection.
    Poddar K; Sinha R; Jana B; Chatterjee S; Mukherjee R; Maity AR; Kumar S; Maji PS
    Appl Opt; 2023 Oct; 62(30):8190-8196. PubMed ID: 38038117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CMOS Compatible Pyroelectric Mid-Infrared Detector Based on Aluminium Nitride.
    Ranacher C; Consani C; Tortschanoff A; Rauter L; Holzmann D; Fleury C; Stocker G; Fant A; Schaunig H; Irsigler P; Grille T; Jakoby B
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Q Tamm plasmon-like resonance in spherical Bragg microcavity resonators.
    García-Puente Y; Auguié B; Kashyap R
    Opt Express; 2024 Mar; 32(6):9644-9655. PubMed ID: 38571194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kirchhoff's Thermal Radiation from Lithography-Free Black Metals.
    Kumagai T; To N; Balčytis A; Seniutinas G; Juodkazis S; Nishijima Y
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32872613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Properties of Mid-Infrared Tamm Phonon-Polaritons Emitter with Silicon Carbide-Based Structures.
    Gong C; Zheng G
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control.
    He M; Nolen JR; Nordlander J; Cleri A; McIlwaine NS; Tang Y; Lu G; Folland TG; Landman BA; Maria JP; Caldwell JD
    Nat Mater; 2021 Dec; 20(12):1663-1669. PubMed ID: 34675374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors.
    Leosson K; Shayestehaminzadeh S; Tryggvason TK; Kossoy A; Agnarsson B; Magnus F; Olafsson S; Gudmundsson JT; Magnusson EB; Shelykh IA
    Opt Lett; 2012 Oct; 37(19):4026-8. PubMed ID: 23027267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tamm State-Coupled Emission: Effect of Probe Location and Emission Wavelength.
    Badugu R; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2014 Sep; 118(37):21558-21571. PubMed ID: 25247029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All silicon MIR super absorber using fractal metasurfaces.
    Ali AM; Ghanim AM; Othman M; Swillam MA
    Sci Rep; 2023 Sep; 13(1):15545. PubMed ID: 37730905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films.
    Burckel DB; Goldflam M; Musick KM; Resnick PJ; Armelles G; Sinclair MB
    Opt Express; 2020 Apr; 28(8):10836-10846. PubMed ID: 32403606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonreciprocal Tamm plasmon absorber based on lossy epsilon-near-zero materials.
    Lu H; Zhu T; Zhang J; Liu HC; Shen KS; Zheng Y; Dong SQ; Xia SQ; Dong C; Li XK; Luo WY; Sun XL; Zhang XZ; Xue CH
    Opt Express; 2021 Jun; 29(12):17736-17745. PubMed ID: 34154050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon photonic crystal thermal emitter at near-infrared wavelengths.
    O'Regan BJ; Wang Y; Krauss TF
    Sci Rep; 2015 Aug; 5():13415. PubMed ID: 26293111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.