These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30897905)

  • 1. Machine Learning Prediction of H Adsorption Energies on Ag Alloys.
    Hoyt RA; Montemore MM; Fampiou I; Chen W; Tritsaris G; Kaxiras E
    J Chem Inf Model; 2019 Apr; 59(4):1357-1365. PubMed ID: 30897905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When more is less: Nonmonotonic trends in adsorption on clusters in alloy surfaces.
    Monasterial AP; Hinderks CA; Viriyavaree S; Montemore MM
    J Chem Phys; 2020 Sep; 153(11):111102. PubMed ID: 32962359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Structure-Sensitive Relations for Small Species Adsorption Using Machine Learning.
    Zong X; Vlachos DG
    J Chem Inf Model; 2022 Sep; 62(18):4361-4368. PubMed ID: 36094012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Segregation Energy in Single Atom Alloys Using Physics and Machine Learning.
    Salem M; Cowan MJ; Mpourmpakis G
    ACS Omega; 2022 Feb; 7(5):4471-4481. PubMed ID: 35155939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface design of alloy protection against CO-poisoning from first principles.
    Yuge K; Koyama Y; Kuwabara A; Tanaka I
    J Phys Condens Matter; 2014 Sep; 26(35):355006. PubMed ID: 25078032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzene adsorption on binary Pt3M alloys and surface alloys: a DFT study.
    Sabbe MK; Laín L; Reyniers MF; Marin GB
    Phys Chem Chem Phys; 2013 Aug; 15(29):12197-214. PubMed ID: 23811813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation analysis of materials properties by machine learning: illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys.
    Chong X; Shang SL; Krajewski AM; Shimanek JD; Du W; Wang Y; Feng J; Shin D; Beese AM; Liu ZK
    J Phys Condens Matter; 2021 Jun; 33(29):. PubMed ID: 34132202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic characteristics of AgCu bimetallic nanoparticles in the oxygen reduction reaction.
    Shin K; Kim DH; Lee HM
    ChemSusChem; 2013 Jun; 6(6):1044-9. PubMed ID: 23650210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio studies of Ag-S bond formation during the adsorption of L-cysteine on Ag(111).
    Luque NB; Santos E
    Langmuir; 2012 Aug; 28(31):11472-80. PubMed ID: 22799749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic, electronic, and thermal effects on structural properties of Ag-Au nanoalloys.
    Chen F; Johnston RL
    ACS Nano; 2008 Jan; 2(1):165-75. PubMed ID: 19206560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs).
    Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R
    ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO
    Roy D; Mandal SC; Pathak B
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56151-56163. PubMed ID: 34787997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning to Predict Homolytic Dissociation Energies of C-H Bonds: Calibration of DFT-based Models with Experimental Data.
    Li W; Luan Y; Zhang Q; Aires-de-Sousa J
    Mol Inform; 2023 Jan; 42(1):e2200193. PubMed ID: 36167940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors.
    Yang Z; Gao W
    Adv Sci (Weinh); 2022 Apr; 9(12):e2106043. PubMed ID: 35229986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Machine-Learning-Aided Screening of Hydrogen Adsorption on Bimetallic Nanoclusters.
    Jäger MOJ; Ranawat YS; Canova FF; Morooka EV; Foster AS
    ACS Comb Sci; 2020 Dec; 22(12):768-781. PubMed ID: 33147012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine-Learning Prediction of CO Adsorption in Thiolated, Ag-Alloyed Au Nanoclusters.
    Panapitiya G; Avendaño-Franco G; Ren P; Wen X; Li Y; Lewis JP
    J Am Chem Soc; 2018 Dec; 140(50):17508-17514. PubMed ID: 30406644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A prediction model for CO
    Cao X; Luo W; Liu H
    RSC Adv; 2024 Apr; 14(17):12235-12246. PubMed ID: 38628487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learned features from density of states for accurate adsorption energy prediction.
    Fung V; Hu G; Ganesh P; Sumpter BG
    Nat Commun; 2021 Jan; 12(1):88. PubMed ID: 33398014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of alkanethiol monolayers on Ag-Au(111) alloy surfaces.
    Kawasaki M; Iino M
    J Phys Chem B; 2006 Oct; 110(42):21124-30. PubMed ID: 17048935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.