BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30898880)

  • 1. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes.
    Schield DR; Card DC; Hales NR; Perry BW; Pasquesi GM; Blackmon H; Adams RH; Corbin AB; Smith CF; Ramesh B; Demuth JP; Betrán E; Tollis M; Meik JM; Mackessy SP; Castoe TA
    Genome Res; 2019 Apr; 29(4):590-601. PubMed ID: 30898880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins, genomic structure and copy number variation of snake venom myotoxins.
    Gopalan SS; Perry BW; Schield DR; Smith CF; Mackessy SP; Castoe TA
    Toxicon; 2022 Sep; 216():92-106. PubMed ID: 35820472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America.
    Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM
    J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Tiger Rattlesnake genome reveals a complex genotype underlying a simple venom phenotype.
    Margres MJ; Rautsaw RM; Strickland JL; Mason AJ; Schramer TD; Hofmann EP; Stiers E; Ellsworth SA; Nystrom GS; Hogan MP; Bartlett DA; Colston TJ; Gilbert DM; Rokyta DR; Parkinson CL
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33468678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Snake venom gene expression is coordinated by novel regulatory architecture and the integration of multiple co-opted vertebrate pathways.
    Perry BW; Gopalan SS; Pasquesi GIM; Schield DR; Westfall AK; Smith CF; Koludarov I; Chippindale PT; Pellegrino MW; Chuong EB; Mackessy SP; Castoe TA
    Genome Res; 2022 Jun; 32(6):1058-1073. PubMed ID: 35649579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel broad spectrum venom metalloproteinase autoinhibitor in the rattlesnake
    Ukken FP; Dowell NL; Hajra M; Carroll SB
    Proc Natl Acad Sci U S A; 2022 Dec; 119(51):e2214880119. PubMed ID: 36508672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic regulatory architecture and epigenomic basis for age-related changes in rattlesnake venom.
    Hogan MP; Holding ML; Nystrom GS; Colston TJ; Bartlett DA; Mason AJ; Ellsworth SA; Rautsaw RM; Lawrence KC; Strickland JL; He B; Fraser P; Margres MJ; Gilbert DM; Gibbs HL; Parkinson CL; Rokyta DR
    Proc Natl Acad Sci U S A; 2024 Apr; 121(16):e2313440121. PubMed ID: 38578985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus).
    Rokyta DR; Wray KP; McGivern JJ; Margres MJ
    Toxicon; 2015 May; 98():34-48. PubMed ID: 25727380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological demands and signaling associated with snake venom production and storage illustrated by transcriptional analyses of venom glands.
    Perry BW; Schield DR; Westfall AK; Mackessy SP; Castoe TA
    Sci Rep; 2020 Oct; 10(1):18083. PubMed ID: 33093509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes.
    Rokyta DR; Wray KP; Lemmon AR; Lemmon EM; Caudle SB
    Toxicon; 2011 Apr; 57(5):657-71. PubMed ID: 21255598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.
    Smith CF; Mackessy SP
    Toxicon; 2016 Sep; 120():110-23. PubMed ID: 27496060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin and diversification of a novel protein family in venomous snakes.
    Giorgianni MW; Dowell NL; Griffin S; Kassner VA; Selegue JE; Carroll SB
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10911-10920. PubMed ID: 32366667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of balancing selection and recombination in the evolution of rattlesnake venom.
    Schield DR; Perry BW; Adams RH; Holding ML; Nikolakis ZL; Gopalan SS; Smith CF; Parker JM; Meik JM; DeGiorgio M; Mackessy SP; Castoe TA
    Nat Ecol Evol; 2022 Sep; 6(9):1367-1380. PubMed ID: 35851850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snakes on a plain: biotic and abiotic factors determine venom compositional variation in a wide-ranging generalist rattlesnake.
    Smith CF; Nikolakis ZL; Ivey K; Perry BW; Schield DR; Balchan NR; Parker J; Hansen KC; Saviola AJ; Castoe TA; Mackessy SP
    BMC Biol; 2023 Jun; 21(1):136. PubMed ID: 37280596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus × viridis Hybrid Zone in Southwestern New Mexico.
    Zancolli G; Baker TG; Barlow A; Bradley RK; Calvete JJ; Carter KC; de Jager K; Owens JB; Price JF; Sanz L; Scholes-Higham A; Shier L; Wood L; Wüster CE; Wüster W
    Toxins (Basel); 2016 Jun; 8(6):. PubMed ID: 27322321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome.
    Perry BW; Card DC; McGlothlin JW; Pasquesi GIM; Adams RH; Schield DR; Hales NR; Corbin AB; Demuth JP; Hoffmann FG; Vandewege MW; Schott RK; Bhattacharyya N; Chang BSW; Casewell NR; Whiteley G; Reyes-Velasco J; Mackessy SP; Gamble T; Storey KB; Biggar KK; Passow CN; Kuo CH; McGaugh SE; Bronikowski AM; de Koning APJ; Edwards SV; Pfrender ME; Minx P; Brodie ED; Brodie ED; Warren WC; Castoe TA
    Genome Biol Evol; 2018 Aug; 10(8):2110-2129. PubMed ID: 30060036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, characterization and crystallization of a phospholipase A2 myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis).
    Ownby CL; Colberg TR; White SP
    Toxicon; 1997 Jan; 35(1):111-24. PubMed ID: 9028014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Venomics and Venom Gland Transcriptome Analysis of Juvenile and Adult Mexican Rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus Revealed miRNA-modulated Ontogenetic Shifts.
    Durban J; Sanz L; Trevisan-Silva D; Neri-Castro E; Alagón A; Calvete JJ
    J Proteome Res; 2017 Sep; 16(9):3370-3390. PubMed ID: 28731347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic cost of venom replenishment by Prairie Rattlesnakes (Crotalus viridis viridis).
    Smith MT; Ortega J; Beaupre SJ
    Toxicon; 2014 Aug; 86():1-7. PubMed ID: 24814011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Margres MJ; McGivern JJ; Wray KP; Seavy M; Calvin K; Rokyta DR
    J Proteomics; 2014 Jan; 96():145-58. PubMed ID: 24231107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.