BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30898899)

  • 1. An Ultra-Dense Haploid Genetic Map for Evaluating the Highly Fragmented Genome Assembly of Norway Spruce
    Bernhardsson C; Vidalis A; Wang X; Scofield DG; Schiffthaler B; Baison J; Street NR; García-Gil MR; Ingvarsson PK
    G3 (Bethesda); 2019 May; 9(5):1623-1632. PubMed ID: 30898899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a highly efficient 50K single nucleotide polymorphism genotyping array for the large and complex genome of Norway spruce (Picea abies L. Karst) by whole genome resequencing and its transferability to other spruce species.
    Bernhardsson C; Zan Y; Chen Z; Ingvarsson PK; Wu HX
    Mol Ecol Resour; 2021 Apr; 21(3):880-896. PubMed ID: 33179386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance.
    Pavy N; Lamothe M; Pelgas B; Gagnon F; Birol I; Bohlmann J; Mackay J; Isabel N; Bousquet J
    Plant J; 2017 Apr; 90(1):189-203. PubMed ID: 28090692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-saturated and complete genetic linkage map of black spruce (Picea mariana).
    Kang BY; Mann IK; Major JE; Rajora OP
    BMC Genomics; 2010 Sep; 11():515. PubMed ID: 20868486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers.
    Acheré V; Faivre-Rampant P; Jeandroz S; Besnard G; Markussen T; Aragones A; Fladung M; Ritter E; Favre JM
    Theor Appl Genet; 2004 May; 108(8):1602-13. PubMed ID: 14991106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-density genetic linkage mapping in Sitka spruce advances the integration of genomic resources in conifers.
    Tumas H; Ilska JJ; Gérardi S; Laroche J; A'Hara S; Boyle B; Janes M; McLean P; Lopez G; Lee SJ; Cottrell J; Gorjanc G; Bousquet J; Woolliams JA; MacKay JJ
    G3 (Bethesda); 2024 Apr; 14(4):. PubMed ID: 38366548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A catalog of annotated high-confidence SNPs from exome capture and sequencing reveals highly polymorphic genes in Norway spruce (Picea abies).
    Azaiez A; Pavy N; Gérardi S; Laroche J; Boyle B; Gagnon F; Mottet MJ; Beaulieu J; Bousquet J
    BMC Genomics; 2018 Dec; 19(1):942. PubMed ID: 30558528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-density genetic linkage map of a black spruce (Picea mariana) × red spruce (Picea rubens) interspecific hybrid.
    Kang BY; Major JE; Rajora OP
    Genome; 2011 Feb; 54(2):128-43. PubMed ID: 21326369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards second-generation STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce (Picea abies K.).
    Paglia GP; Olivieri AM; Morgante M
    Mol Gen Genet; 1998 Jun; 258(5):466-78. PubMed ID: 9669328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms.
    Chen J; Uebbing S; Gyllenstrand N; Lagercrantz U; Lascoux M; Källman T
    BMC Genomics; 2012 Nov; 13():589. PubMed ID: 23122049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demography and Natural Selection Have Shaped Genetic Variation in the Widely Distributed Conifer Norway Spruce (Picea abies).
    Wang X; Bernhardsson C; Ingvarsson PK
    Genome Biol Evol; 2020 Feb; 12(2):3803-3817. PubMed ID: 31958121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection.
    Lind M; Källman T; Chen J; Ma XF; Bousquet J; Morgante M; Zaina G; Karlsson B; Elfstrand M; Lascoux M; Stenlid J
    PLoS One; 2014; 9(7):e101049. PubMed ID: 25036209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce.
    Pavy N; Pelgas B; Beauseigle S; Blais S; Gagnon F; Gosselin I; Lamothe M; Isabel N; Bousquet J
    BMC Genomics; 2008 Jan; 9():21. PubMed ID: 18205909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes.
    Ranade SS; García-Gil MR; Rosselló JA
    Mol Genet Genomics; 2016 Apr; 291(2):935-41. PubMed ID: 26732267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.
    Hamberger B; Hall D; Yuen M; Oddy C; Hamberger B; Keeling CI; Ritland C; Ritland K; Bohlmann J
    BMC Plant Biol; 2009 Aug; 9():106. PubMed ID: 19656416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genome mapping among Picea glauca, P. mariana x P. rubens and P. abies, and correspondence with other Pinaceae.
    Pelgas B; Beauseigle S; Acheré V; Jeandroz S; Bousquet J; Isabel N
    Theor Appl Genet; 2006 Nov; 113(8):1371-93. PubMed ID: 17061103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Norway spruce genome sequence and conifer genome evolution.
    Nystedt B; Street NR; Wetterbom A; Zuccolo A; Lin YC; Scofield DG; Vezzi F; Delhomme N; Giacomello S; Alexeyenko A; Vicedomini R; Sahlin K; Sherwood E; Elfstrand M; Gramzow L; Holmberg K; Hällman J; Keech O; Klasson L; Koriabine M; Kucukoglu M; Käller M; Luthman J; Lysholm F; Niittylä T; Olson A; Rilakovic N; Ritland C; Rosselló JA; Sena J; Svensson T; Talavera-López C; Theißen G; Tuominen H; Vanneste K; Wu ZQ; Zhang B; Zerbe P; Arvestad L; Bhalerao R; Bohlmann J; Bousquet J; Garcia Gil R; Hvidsten TR; de Jong P; MacKay J; Morgante M; Ritland K; Sundberg B; Thompson SL; Van de Peer Y; Andersson B; Nilsson O; Ingvarsson PK; Lundeberg J; Jansson S
    Nature; 2013 May; 497(7451):579-84. PubMed ID: 23698360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation, functional annotation and comparative analysis of black spruce (Picea mariana) ESTs: an important conifer genomic resource.
    Mann IK; Wegrzyn JL; Rajora OP
    BMC Genomics; 2013 Oct; 14():702. PubMed ID: 24119028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis).
    Ralph SG; Chun HJ; Kolosova N; Cooper D; Oddy C; Ritland CE; Kirkpatrick R; Moore R; Barber S; Holt RA; Jones SJ; Marra MA; Douglas CJ; Ritland K; Bohlmann J
    BMC Genomics; 2008 Oct; 9():484. PubMed ID: 18854048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome level high-density integrated genetic maps improve the Pyrus bretschneideri 'DangshanSuli' v1.0 genome.
    Xue H; Wang S; Yao JL; Deng CH; Wang L; Su Y; Zhang H; Zhou H; Sun M; Li X; Yang J
    BMC Genomics; 2018 Nov; 19(1):833. PubMed ID: 30463521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.