These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 30899000)
1. A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae. Münzner U; Klipp E; Krantz M Nat Commun; 2019 Mar; 10(1):1308. PubMed ID: 30899000 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional regulatory networks in Saccharomyces cerevisiae. Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584 [TBL] [Abstract][Full Text] [Related]
3. ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast. Mondeel TDGA; Holland P; Nielsen J; Barberis M Nucleic Acids Res; 2019 Sep; 47(15):7825-7841. PubMed ID: 31299083 [TBL] [Abstract][Full Text] [Related]
4. Robustness analysis of cellular systems using the genetic tug-of-war method. Moriya H; Makanae K; Watanabe K; Chino A; Shimizu-Yoshida Y Mol Biosyst; 2012 Oct; 8(10):2513-22. PubMed ID: 22722869 [TBL] [Abstract][Full Text] [Related]
5. A cell size- and cell cycle-aware stochastic model for predicting time-dynamic gene network activity in individual cells. Song R; Peng W; Liu P; Acar M BMC Syst Biol; 2015 Dec; 9():91. PubMed ID: 26646617 [TBL] [Abstract][Full Text] [Related]
7. The genetic landscape of a cell. Costanzo M; Baryshnikova A; Bellay J; Kim Y; Spear ED; Sevier CS; Ding H; Koh JL; Toufighi K; Mostafavi S; Prinz J; St Onge RP; VanderSluis B; Makhnevych T; Vizeacoumar FJ; Alizadeh S; Bahr S; Brost RL; Chen Y; Cokol M; Deshpande R; Li Z; Lin ZY; Liang W; Marback M; Paw J; San Luis BJ; Shuteriqi E; Tong AH; van Dyk N; Wallace IM; Whitney JA; Weirauch MT; Zhong G; Zhu H; Houry WA; Brudno M; Ragibizadeh S; Papp B; Pál C; Roth FP; Giaever G; Nislow C; Troyanskaya OG; Bussey H; Bader GD; Gingras AC; Morris QD; Kim PM; Kaiser CA; Myers CL; Andrews BJ; Boone C Science; 2010 Jan; 327(5964):425-31. PubMed ID: 20093466 [TBL] [Abstract][Full Text] [Related]
8. Approaches to modeling gene regulatory networks: a gentle introduction. Schlitt T Methods Mol Biol; 2013; 1021():13-35. PubMed ID: 23715978 [TBL] [Abstract][Full Text] [Related]
9. Bck2 is a phase-independent activator of cell cycle-regulated genes in yeast. Ferrezuelo F; Aldea M; Futcher B Cell Cycle; 2009 Jan; 8(2):239-52. PubMed ID: 19158491 [TBL] [Abstract][Full Text] [Related]
10. Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae. Cokus S; Rose S; Haynor D; Grønbech-Jensen N; Pellegrini M BMC Bioinformatics; 2006 Aug; 7():381. PubMed ID: 16914048 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae. Li S; Heermann DW Nucleus; 2013; 4(3):216-28. PubMed ID: 23674068 [TBL] [Abstract][Full Text] [Related]
12. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Chen Z; Odstrcil EA; Tu BP; McKnight SL Science; 2007 Jun; 316(5833):1916-9. PubMed ID: 17600220 [TBL] [Abstract][Full Text] [Related]
14. Cdc37 regulation of the kinome: when to hold 'em and when to fold 'em. Karnitz LM; Felts SJ Sci STKE; 2007 May; 2007(385):pe22. PubMed ID: 17488976 [TBL] [Abstract][Full Text] [Related]
15. Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community. Zhang C; Sánchez BJ; Li F; Eiden CWQ; Scott WT; Liebal UW; Blank LM; Mengers HG; Anton M; Rangel AT; Mendoza SN; Zhang L; Nielsen J; Lu H; Kerkhoven EJ Mol Syst Biol; 2024 Oct; 20(10):1134-1150. PubMed ID: 39134886 [TBL] [Abstract][Full Text] [Related]
16. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data. Panchy NL; Lloyd JP; Shiu SH BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475 [TBL] [Abstract][Full Text] [Related]
17. The network architecture of the Saccharomyces cerevisiae genome. Hoang SA; Bekiranov S PLoS One; 2013; 8(12):e81972. PubMed ID: 24349163 [TBL] [Abstract][Full Text] [Related]
18. Polo kinase controls cell-cycle-dependent transcription by targeting a coactivator protein. Darieva Z; Bulmer R; Pic-Taylor A; Doris KS; Geymonat M; Sedgwick SG; Morgan BA; Sharrocks AD Nature; 2006 Nov; 444(7118):494-8. PubMed ID: 17122856 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of Far1, a cyclin-dependent kinase inhibitor, induces a large transcriptional reprogramming in which RNA synthesis senses Far1 in a Sfp1-mediated way. Busti S; Gotti L; Balestrieri C; Querin L; Drovandi G; Felici G; Mavelli G; Bertolazzi P; Alberghina L; Vanoni M Biotechnol Adv; 2012; 30(1):185-201. PubMed ID: 21964263 [TBL] [Abstract][Full Text] [Related]
20. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. Borklu Yucel E; Ulgen KO Mol Biosyst; 2013 Nov; 9(11):2914-31. PubMed ID: 24056632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]