These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 30899212)

  • 1. Going Deeper in Spiking Neural Networks: VGG and Residual Architectures.
    Sengupta A; Ye Y; Wang R; Liu C; Roy K
    Front Neurosci; 2019; 13():95. PubMed ID: 30899212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification.
    Rueckauer B; Lungu IA; Hu Y; Pfeiffer M; Liu SC
    Front Neurosci; 2017; 11():682. PubMed ID: 29375284
    [No Abstract]   [Full Text] [Related]  

  • 3. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms.
    Syed T; Kakani V; Cui X; Kim H
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Scalable, Efficient, and Accurate Deep Spiking Neural Networks With Backward Residual Connections, Stochastic Softmax, and Hybridization.
    Panda P; Aketi SA; Roy K
    Front Neurosci; 2020; 14():653. PubMed ID: 32694977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning With Spiking Neurons: Opportunities and Challenges.
    Pfeiffer M; Pfeil T
    Front Neurosci; 2018; 12():774. PubMed ID: 30410432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network.
    Wu D; Yi X; Huang X
    Front Neurosci; 2022; 16():759900. PubMed ID: 35692427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    PatiƱo-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training much deeper spiking neural networks with a small number of time-steps.
    Meng Q; Yan S; Xiao M; Wang Y; Lin Z; Luo ZQ
    Neural Netw; 2022 Sep; 153():254-268. PubMed ID: 35759953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpQuant-SNN: ultra-low precision membrane potential with sparse activations unlock the potential of on-device spiking neural networks applications.
    Hasssan A; Meng J; Anupreetham A; Seo JS
    Front Neurosci; 2024; 18():1440000. PubMed ID: 39296710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Connection Between Binary and Spiking Neural Networks.
    Lu S; Sengupta A
    Front Neurosci; 2020; 14():535. PubMed ID: 32670002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DIET-SNN: A Low-Latency Spiking Neural Network With Direct Input Encoding and Leakage and Threshold Optimization.
    Rathi N; Roy K
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):3174-3182. PubMed ID: 34596559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiking Deep Residual Networks.
    Hu Y; Tang H; Pan G
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):5200-5205. PubMed ID: 34723807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroevolution Guided Hybrid Spiking Neural Network Training.
    Lu S; Sengupta A
    Front Neurosci; 2022; 16():838523. PubMed ID: 35546880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.