These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 3090028)
21. Reconstitution of the lysosomal proton pump. D'Souza MP; Ambudkar SV; August JT; Maloney PC Proc Natl Acad Sci U S A; 1987 Oct; 84(20):6980-4. PubMed ID: 2890158 [TBL] [Abstract][Full Text] [Related]
22. Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus. Knol J; Veenhoff L; Liang WJ; Henderson PJ; Leblanc G; Poolman B J Biol Chem; 1996 Jun; 271(26):15358-66. PubMed ID: 8662938 [TBL] [Abstract][Full Text] [Related]
23. Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis. Andersson U; Levander F; Rådström P J Biol Chem; 2001 Nov; 276(46):42707-13. PubMed ID: 11553642 [TBL] [Abstract][Full Text] [Related]
24. Functional reconstitution of ATP-dependent transporters from the solubilized hepatocyte canalicular membrane. Büchler M; Böhme M; Ortlepp H; Keppler D Eur J Biochem; 1994 Sep; 224(2):345-52. PubMed ID: 7925347 [TBL] [Abstract][Full Text] [Related]
25. A rapid method for reconstitution of bacterial membrane proteins. Varadhachary A; Maloney PC Mol Microbiol; 1990 Aug; 4(8):1407-11. PubMed ID: 2280690 [TBL] [Abstract][Full Text] [Related]
26. Restrictive use of detergents in the functional reconstitution of the secondary multidrug transporter LmrP. Putman M; van Veen HW; Poolman B; Konings WN Biochemistry; 1999 Jan; 38(3):1002-8. PubMed ID: 9893996 [TBL] [Abstract][Full Text] [Related]
27. Amplified expression, purification and functional reconstitution of the dipeptide and tripeptide transport protein of Lactococcus lactis. Hagting A; Knol J; Hasemeier B; Streutker MR; Fang G; Poolman B; Konings WN Eur J Biochem; 1997 Jul; 247(2):581-7. PubMed ID: 9266700 [TBL] [Abstract][Full Text] [Related]
28. Reconstitution of the isolated phosphate-transport system of pig-heart mitochondria. Mende P; Kolbe HV; Kadenbach B; Stipani I; Palmieri F Eur J Biochem; 1982 Nov; 128(1):91-5. PubMed ID: 7173214 [TBL] [Abstract][Full Text] [Related]
29. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth. Thompson J; Chassy BM J Bacteriol; 1982 Sep; 151(3):1454-65. PubMed ID: 6286601 [TBL] [Abstract][Full Text] [Related]
30. The reversible antiport-uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine. Schroers A; Krämer R; Wohlrab H J Biol Chem; 1997 Apr; 272(16):10558-64. PubMed ID: 9099701 [TBL] [Abstract][Full Text] [Related]
31. Factors affecting the stability of the renal sodium/phosphate symporter during its solubilization and reconstitution. Vachon V; Delisle MC; Giroux S; Laprade R; Béliveau R Int J Biochem Cell Biol; 1995 Mar; 27(3):311-8. PubMed ID: 7780835 [TBL] [Abstract][Full Text] [Related]
32. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. Kadner RJ; Murphy GP; Stephens CM J Gen Microbiol; 1992 Oct; 138(10):2007-14. PubMed ID: 1479338 [TBL] [Abstract][Full Text] [Related]
33. Purification of UhpT, the sugar phosphate transporter of Escherichia coli. Tamai E; Fann MC; Tsuchiya T; Maloney PC Protein Expr Purif; 1997 Jul; 10(2):275-82. PubMed ID: 9226724 [TBL] [Abstract][Full Text] [Related]
34. Transport of basic amino acids by membrane vesicles of Lactococcus lactis. Driessen AJ; van Leeuwen C; Konings WN J Bacteriol; 1989 Mar; 171(3):1453-8. PubMed ID: 2537818 [TBL] [Abstract][Full Text] [Related]
35. Reconstitution of the partially purified renal phosphate (Pi) transporter. Schäli C; Vaughn DA; Fanestil DD Biochem J; 1986 Apr; 235(1):189-97. PubMed ID: 3741379 [TBL] [Abstract][Full Text] [Related]
36. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria. Abe K; Hayashi H; Maloney PC J Biol Chem; 1996 Feb; 271(6):3079-84. PubMed ID: 8621704 [TBL] [Abstract][Full Text] [Related]
37. Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A. van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ J Biol Chem; 1993 Sep; 268(26):19377-83. PubMed ID: 8366084 [TBL] [Abstract][Full Text] [Related]
38. Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH. Poolman B; Nijssen RM; Konings WN J Bacteriol; 1987 Dec; 169(12):5373-8. PubMed ID: 3119562 [TBL] [Abstract][Full Text] [Related]
39. PhoE protein pore of the outer membrane of Escherichia coli K12 is a particularly efficient channel for organic and inorganic phosphate. Korteland J; Tommassen J; Lugtenberg B Biochim Biophys Acta; 1982 Sep; 690(2):282-9. PubMed ID: 6289897 [TBL] [Abstract][Full Text] [Related]
40. Manipulation of activity and orientation of membrane-reconstituted di-tripeptide transport protein DtpT of Lactococcus lactis. Fang G; Friesen R; Lanfermeijer F; Hagting A; Poolman B; Konings WN Mol Membr Biol; 1999; 16(4):297-304. PubMed ID: 10766129 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]