These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30900613)

  • 1. Filamentous bacteriophage: A prospective platform for targeting drugs in phage-mediated cancer therapy.
    Garg P
    J Cancer Res Ther; 2019 Mar; 15(Supplement):S1-S10. PubMed ID: 30900613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles.
    Ju Z; Sun W
    Drug Deliv; 2017 Nov; 24(1):1898-1908. PubMed ID: 29191048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted filamentous bacteriophages as therapeutic agents.
    Yacoby I; Benhar I
    Expert Opin Drug Deliv; 2008 Mar; 5(3):321-9. PubMed ID: 18318653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filamentous Bacteriophage-A Powerful Carrier for Glioma Therapy.
    Wang Y; Sheng J; Chai J; Zhu C; Li X; Yang W; Cui R; Ge T
    Front Immunol; 2021; 12():729336. PubMed ID: 34566987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development.
    Samoylova TI; Braden TD; Spencer JA; Bartol FF
    Curr Med Chem; 2017 Nov; 24(35):3907-3920. PubMed ID: 28901276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide.
    van Houten NE; Zwick MB; Menendez A; Scott JK
    Vaccine; 2006 May; 24(19):4188-200. PubMed ID: 16488517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing strategies to enhance and focus humoral immune responses using filamentous phage as a model antigen.
    Henry KA; Murira A; van Houten NE; Scott JK
    Bioeng Bugs; 2011; 2(5):275-83. PubMed ID: 22008640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infective and inactivated filamentous phage as carriers for immunogenic peptides.
    Samoylova TI; Norris MD; Samoylov AM; Cochran AM; Wolfe KG; Petrenko VA; Cox NR
    J Virol Methods; 2012 Jul; 183(1):63-8. PubMed ID: 22575687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines.
    Hassapis KA; Stylianou DC; Kostrikis LG
    Viruses; 2014 Dec; 6(12):5047-76. PubMed ID: 25525909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: a comparative approach to conventional DNA vaccine.
    Hashemi H; Bamdad T; Jamali A; Pouyanfard S; Mohammadi MG
    J Virol Methods; 2010 Feb; 163(2):440-4. PubMed ID: 19903497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New vectors for peptide display on the surface of filamentous bacteriophage.
    Malik P; Perham RN
    Gene; 1996 May; 171(1):49-51. PubMed ID: 8675029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization.
    Abbineni G; Modali S; Safiejko-Mroczka B; Petrenko VA; Mao C
    Mol Pharm; 2010 Oct; 7(5):1629-42. PubMed ID: 20735141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of inovirus-associated vector vaccines using phage-display technologies.
    Stern Z; Stylianou DC; Kostrikis LG
    Expert Rev Vaccines; 2019 Sep; 18(9):913-920. PubMed ID: 31373843
    [No Abstract]   [Full Text] [Related]  

  • 14. Phage as a Genetically Modifiable Supramacromolecule in Chemistry, Materials and Medicine.
    Cao B; Yang M; Mao C
    Acc Chem Res; 2016 Jun; 49(6):1111-20. PubMed ID: 27153341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'.
    Petrenko VA; Gillespie JW
    Expert Opin Drug Deliv; 2017 Mar; 14(3):373-384. PubMed ID: 27466706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.
    Vaks L; Benhar I
    Methods Mol Biol; 2011; 726():187-206. PubMed ID: 21424451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and characterization of a 9-mer phage display pVIII-library with regulated peptide density.
    Fagerlund A; Myrset AH; Kulseth MA
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):925-36. PubMed ID: 18716770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phage nanoparticle as a carrier for controlling fungal infection.
    Xu S; Zhang G; Wang M; Lin T; Liu W; Wang Y
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3397-3403. PubMed ID: 35501488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy.
    Al-Mansoori L; Elsinga P; Goda SK
    Biomed Pharmacother; 2021 Dec; 144():112260. PubMed ID: 34607105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity.
    Yue H; Li Y; Yang M; Mao C
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103645. PubMed ID: 34914854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.