These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30900851)
21. Gadolinium oxide: Exclusive selectivity and sensitivity in the enrichment of phosphorylated biomolecules. Jabeen F; Najam-Ul-Haq M; Ashiq MN; Rainer M; Huck CW; Bonn GK J Sep Sci; 2016 Nov; 39(21):4175-4182. PubMed ID: 27592854 [TBL] [Abstract][Full Text] [Related]
22. Design of Gd Jiang D; Lv S; Han X; Duan L; Liu J Mikrochim Acta; 2021 Sep; 188(10):327. PubMed ID: 34494164 [TBL] [Abstract][Full Text] [Related]
23. Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Lin HY; Chen WY; Chen YC Anal Bioanal Chem; 2009 Aug; 394(8):2129-36. PubMed ID: 19554316 [TBL] [Abstract][Full Text] [Related]
24. Development of Gd Jiang D; Li X; Ma J; Jia Q Talanta; 2018 Apr; 180():368-375. PubMed ID: 29332825 [TBL] [Abstract][Full Text] [Related]
25. Multifunctional ZrO(2) nanoparticles and ZrO(2)-SiO (2) nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Kailasa SK; Wu HF Anal Bioanal Chem; 2010 Feb; 396(3):1115-25. PubMed ID: 20091153 [TBL] [Abstract][Full Text] [Related]
26. Facile liquid-phase deposition synthesis of titania-coated magnetic sporopollenin for the selective capture of phosphopeptides. Hussain D; Najam-Ul-Haq M; Majeed S; Musharraf SG; Lu Q; He X; Feng YQ Anal Bioanal Chem; 2019 Jun; 411(15):3373-3382. PubMed ID: 31016328 [TBL] [Abstract][Full Text] [Related]
27. Iron oxide/niobium oxide core-shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis. Lin HY; Chen WY; Chen YC J Biomed Nanotechnol; 2009 Apr; 5(2):215-23. PubMed ID: 20055100 [TBL] [Abstract][Full Text] [Related]
28. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Zhou H; Tian R; Ye M; Xu S; Feng S; Pan C; Jiang X; Li X; Zou H Electrophoresis; 2007 Jul; 28(13):2201-15. PubMed ID: 17539039 [TBL] [Abstract][Full Text] [Related]
29. Development of immobilized Sn Lin H; Deng C Proteomics; 2016 Nov; 16(21):2733-2741. PubMed ID: 27650410 [TBL] [Abstract][Full Text] [Related]
30. Post-synthesis of biomimetic chitosan with honeycomb-like structure for sensitive recognition of phosphorylated peptides. Zhu C; Wu J; Jin X; Yan Y; Ding CF; Tang K; Zhang D J Chromatogr A; 2021 Apr; 1643():462072. PubMed ID: 33789194 [TBL] [Abstract][Full Text] [Related]
31. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis. Shi C; Lin Q; Deng C Talanta; 2015 Apr; 135():81-6. PubMed ID: 25640129 [TBL] [Abstract][Full Text] [Related]
32. An optimized magnetite microparticle-based phosphopeptide enrichment strategy for identifying multiple phosphorylation sites in an immunoprecipitated protein. Huang Y; Shi Q; Tsung CK; Gunawardena HP; Xie L; Yu Y; Liang H; Yang P; Stucky GD; Chen X Anal Biochem; 2011 Jan; 408(1):19-31. PubMed ID: 20696126 [TBL] [Abstract][Full Text] [Related]
33. Preparation of high-efficiency titanium ion immobilized magnetic graphite nitride nanocomposite for phosphopeptide enrichment. Jiang D; Qi R; Lv S; Wu S; Li Y; Liu J Anal Chim Acta; 2023 Dec; 1283():341974. PubMed ID: 37977792 [TBL] [Abstract][Full Text] [Related]
34. Optimized protocol for on-target phosphopeptide enrichment prior to matrix-assisted laser desorption-ionization mass spectrometry using mesoporous titanium dioxide. Eriksson A; Bergquist J; Edwards K; Hagfeldt A; Malmström D; Agmo Hernández V Anal Chem; 2010 Jun; 82(11):4577-83. PubMed ID: 20443553 [TBL] [Abstract][Full Text] [Related]
35. In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. Krásný L; Pompach P; Strohalm M; Obsilova V; Strnadová M; Novák P; Volný M J Mass Spectrom; 2012 Oct; 47(10):1294-302. PubMed ID: 23019160 [TBL] [Abstract][Full Text] [Related]
36. The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis. Zhao L; Wu R; Han G; Zhou H; Ren L; Tian R; Zou H J Am Soc Mass Spectrom; 2008 Aug; 19(8):1176-86. PubMed ID: 18502663 [TBL] [Abstract][Full Text] [Related]
37. Quantitative mass spectrometry combined with separation and enrichment of phosphopeptides by titania coated magnetic mesoporous silica microspheres for screening of protein kinase inhibitors. Ji L; Wu JH; Luo Q; Li X; Zheng W; Zhai G; Wang F; Lü S; Feng YQ; Liu J; Xiong S Anal Chem; 2012 Mar; 84(5):2284-91. PubMed ID: 22304342 [TBL] [Abstract][Full Text] [Related]
38. Amine-functionalized sol-gel-based lab-in-a-pipet-tip approach for the fast enrichment and specific purification of phosphopeptides in MALDI-MS applications. Atakay M; Celikbıçak O; Salih B Anal Chem; 2012 Mar; 84(6):2713-20. PubMed ID: 22393919 [TBL] [Abstract][Full Text] [Related]
39. Simple preparation of magnetic metal-organic frameworks composite as a "bait" for phosphoproteome research. Han G; Zeng Q; Jiang Z; Deng W; Huang C; Li Y Talanta; 2017 Aug; 171():283-290. PubMed ID: 28551142 [TBL] [Abstract][Full Text] [Related]
40. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides. Lin H; Chen H; Shao X; Deng C Mikrochim Acta; 2018 Nov; 185(12):562. PubMed ID: 30488348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]