These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30901015)

  • 1. Selective growth of monolayer and bilayer graphene patterns by a rapid growth method.
    Lakshad Wimalananda MDS; Kim JK; Lee JM
    Nanoscale; 2019 Apr; 11(14):6727-6736. PubMed ID: 30901015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective growth of graphene in layer-by-layer via chemical vapor deposition.
    Park J; An H; Choi DC; Hussain S; Song W; An KS; Lee WJ; Lee N; Lee WG; Jung J
    Nanoscale; 2016 Aug; 8(30):14633-42. PubMed ID: 27436358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the number of layers in graphene using the growth pressure.
    Cho JH; Na SR; Park S; Akinwande D; Liechti KM; Cullinan MA
    Nanotechnology; 2019 Jun; 30(23):235602. PubMed ID: 30780133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process.
    Liu M; Zhang Y; Chen Y; Gao Y; Gao T; Ma D; Ji Q; Zhang Y; Li C; Liu Z
    ACS Nano; 2012 Dec; 6(12):10581-9. PubMed ID: 23157621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.
    Zhao P; Kim S; Chen X; Einarsson E; Wang M; Song Y; Wang H; Chiashi S; Xiang R; Maruyama S
    ACS Nano; 2014 Nov; 8(11):11631-8. PubMed ID: 25363605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-Induced in Situ Growth of Monolayer and Bilayer 2D SiC Crystals Toward High-Temperature Electronics.
    Geng D; Hu J; Fu W; Ang LK; Yang HY
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39109-39115. PubMed ID: 31573176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth mechanism of graphene on graphene films grown by chemical vapor deposition.
    Kang C; Jung DH; Lee JS
    Chem Asian J; 2015 Mar; 10(3):637-41. PubMed ID: 25655906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable Growth of the Graphene from Millimeter-Sized Monolayer to Multilayer on Cu by Chemical Vapor Deposition.
    Liu J; Huang Z; Lai F; Lin L; Xu Y; Zuo C; Zheng W; Qu Y
    Nanoscale Res Lett; 2015 Dec; 10(1):455. PubMed ID: 26612469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectively Patterned Regrowth of Bilayer Graphene for Self-Integrated Electronics by Sequential Chemical Vapor Deposition.
    Yi D; Jeon S; Hong SW
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40014-40023. PubMed ID: 30365886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition.
    Yeh NC; Hsu CC; Bagley J; Tseng WS
    Nanotechnology; 2019 Apr; 30(16):162001. PubMed ID: 30634178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-quality monolayer graphene synthesis on Pd foils via the suppression of multilayer growth at grain boundaries.
    Ma D; Liu M; Gao T; Li C; Sun J; Nie Y; Ji Q; Zhang Y; Song X; Zhang Y; Liu Z
    Small; 2014 Oct; 10(19):4003-11. PubMed ID: 24913919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Quality Graphene Thin Films Synthesized by Glow Discharge Method in A Chemical Vapor Deposition System Using Solid Carbon Source.
    Wang L; Sun J; Guo W; Dong Y; Xie Y; Xiong F; Du Z; Li L; Deng J; Xu C
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32357507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Vapor Deposition of Bernal-Stacked Graphene on a Cu Surface by Breaking the Carbon Solubility Symmetry in Cu Foils.
    Yoo MS; Lee HC; Lee S; Lee SB; Lee NS; Cho K
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28635145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition.
    Lee D; Kwon GD; Kim JH; Moyen E; Lee YH; Baik S; Pribat D
    Nanoscale; 2014 Nov; 6(21):12943-51. PubMed ID: 25233143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure.
    Jang J; Son M; Chung S; Kim K; Cho C; Lee BH; Ham MH
    Sci Rep; 2015 Dec; 5():17955. PubMed ID: 26658923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitaxial nucleation of CVD bilayer graphene on copper.
    Song Y; Zhuang J; Song M; Yin S; Cheng Y; Zhang X; Wang M; Xiang R; Xia Y; Maruyama S; Zhao P; Ding F; Wang H
    Nanoscale; 2016 Dec; 8(48):20001-20007. PubMed ID: 27858033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.