These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

991 related articles for article (PubMed ID: 30901275)

  • 1. Ablation of cardiac TIGAR preserves myocardial energetics and cardiac function in the pressure overload heart failure model.
    Okawa Y; Hoshino A; Ariyoshi M; Kaimoto S; Tateishi S; Ono K; Uchihashi M; Iwai-Kanai E; Matoba S
    Am J Physiol Heart Circ Physiol; 2019 Jun; 316(6):H1366-H1377. PubMed ID: 30901275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockout of TIGAR enhances myocardial phosphofructokinase activity and preserves diastolic function in heart failure.
    He X; Zeng H; Cantrell AC; Williams QA; Chen JX
    J Cell Physiol; 2022 Aug; 237(8):3317-3327. PubMed ID: 35621078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure.
    Kaimoto S; Hoshino A; Ariyoshi M; Okawa Y; Tateishi S; Ono K; Uchihashi M; Fukai K; Iwai-Kanai E; Matoba S
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H305-H313. PubMed ID: 28011586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory role of TIGAR on endothelial metabolism and angiogenesis.
    He X; Zeng H; Cantrell AC; Chen JX
    J Cell Physiol; 2021 Nov; 236(11):7578-7590. PubMed ID: 33928637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p53 and TIGAR regulate cardiac myocyte energy homeostasis under hypoxic stress.
    Kimata M; Matoba S; Iwai-Kanai E; Nakamura H; Hoshino A; Nakaoka M; Katamura M; Okawa Y; Mita Y; Okigaki M; Ikeda K; Tatsumi T; Matsubara H
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1908-16. PubMed ID: 20935145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking.
    Goldenberg JR; Carley AN; Ji R; Zhang X; Fasano M; Schulze PC; Lewandowski ED
    Circulation; 2019 Jun; 139(24):2765-2777. PubMed ID: 30909726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure.
    Bradley JM; Li Z; Organ CL; Polhemus DJ; Otsuka H; Islam KN; Bhushan S; Gorodnya OM; Ruchko MV; Gillespie MN; Wilson GL; Lefer DJ
    Am J Physiol Heart Circ Physiol; 2018 Feb; 314(2):H311-H321. PubMed ID: 29101177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p53-TP53-Induced Glycolysis Regulator Mediated Glycolytic Suppression Attenuates DNA Damage and Genomic Instability in Fanconi Anemia Hematopoietic Stem Cells.
    Li X; Wu L; Zopp M; Kopelov S; Du W
    Stem Cells; 2019 Jul; 37(7):937-947. PubMed ID: 30977208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice.
    Umbarawan Y; Syamsunarno MRAA; Koitabashi N; Yamaguchi A; Hanaoka H; Hishiki T; Nagahata-Naito Y; Obinata H; Sano M; Sunaga H; Matsui H; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Cardiovasc Res; 2018 Jul; 114(8):1132-1144. PubMed ID: 29554241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of mitochondrial creatine kinase preserves cardiac energetics without ameliorating murine chronic heart failure.
    Cao F; Maguire ML; McAndrew DJ; Lake HA; Neubauer S; Zervou S; Schneider JE; Lygate CA
    Basic Res Cardiol; 2020 Jan; 115(2):12. PubMed ID: 31925563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TIGAR Deficiency Blunts Angiotensin-II-Induced Cardiac Hypertrophy in Mice.
    He X; Williams QA; Cantrell AC; Besanson J; Zeng H; Chen JX
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy.
    Riehle C; Wende AR; Zaha VG; Pires KM; Wayment B; Olsen C; Bugger H; Buchanan J; Wang X; Moreira AB; Doenst T; Medina-Gomez G; Litwin SE; Lelliott CJ; Vidal-Puig A; Abel ED
    Circ Res; 2011 Sep; 109(7):783-93. PubMed ID: 21799152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress.
    Kazakov A; Hall RA; Werner C; Meier T; Trouvain A; Rodionycheva S; Nickel A; Lammert F; Maack C; Böhm M; Laufs U
    Basic Res Cardiol; 2018 Sep; 113(6):42. PubMed ID: 30191336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure.
    Li J; Yousefi K; Ding W; Singh J; Shehadeh LA
    Cardiovasc Res; 2017 May; 113(6):633-643. PubMed ID: 28453726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice.
    Goh KY; He L; Song J; Jinno M; Rogers AJ; Sethu P; Halade GV; Rajasekaran NS; Liu X; Prabhu SD; Darley-Usmar V; Wende AR; Zhou L
    Redox Biol; 2019 Feb; 21():101100. PubMed ID: 30641298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercellular Adhesion Molecule 1 Regulates Left Ventricular Leukocyte Infiltration, Cardiac Remodeling, and Function in Pressure Overload-Induced Heart Failure.
    Salvador AM; Nevers T; Velázquez F; Aronovitz M; Wang B; Abadía Molina A; Jaffe IZ; Karas RH; Blanton RM; Alcaide P
    J Am Heart Assoc; 2016 Mar; 5(3):e003126. PubMed ID: 27068635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of actin dynamics regulated by Rho effector mDia1 attenuates pressure overload-induced cardiac hypertrophic responses and exacerbates dysfunction.
    Abe I; Terabayashi T; Hanada K; Kondo H; Teshima Y; Ishii Y; Miyoshi M; Kira S; Saito S; Tsuchimochi H; Shirai M; Yufu K; Arakane M; Daa T; Thumkeo D; Narumiya S; Takahashi N; Ishizaki T
    Cardiovasc Res; 2021 Mar; 117(4):1103-1117. PubMed ID: 32647865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
    Ho KL; Zhang L; Wagg C; Al Batran R; Gopal K; Levasseur J; Leone T; Dyck JRB; Ussher JR; Muoio DM; Kelly DP; Lopaschuk GD
    Cardiovasc Res; 2019 Sep; 115(11):1606-1616. PubMed ID: 30778524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiomyocyte-specific loss of RNA polymerase II subunit 5-mediating protein causes myocardial dysfunction and heart failure.
    Zhang J; Sheng J; Dong L; Xu Y; Yu L; Liu Y; Huang X; Wan S; Lan HY; Wang H
    Cardiovasc Res; 2019 Sep; 115(11):1617-1628. PubMed ID: 30590389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytosolic DNA sensor cGAS plays an essential pathogenetic role in pressure overload-induced heart failure.
    Hu D; Cui YX; Wu MY; Li L; Su LN; Lian Z; Chen H
    Am J Physiol Heart Circ Physiol; 2020 Jun; 318(6):H1525-H1537. PubMed ID: 32383996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.