These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30901351)

  • 61. Ingested prey increase risks of visual predation in transparent Chaoborus larvae.
    Giguère LA; Northcote TG
    Oecologia; 1987 Aug; 73(1):48-52. PubMed ID: 28311404
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Going with the flow: hydrodynamic cues trigger directed escapes from a stalking predator.
    Tuttle LJ; Robinson HE; Takagi D; Strickler JR; Lenz PH; Hartline DK
    J R Soc Interface; 2019 Feb; 16(151):20180776. PubMed ID: 30958200
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Impact of Chaoborus predation upon the structure and dynamics of a crustacean zooplankton community.
    Neill WE
    Oecologia; 1981 Mar; 48(2):164-177. PubMed ID: 28309795
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A fly larva (Syrphidae: Ocyptamus) that preys on adult flies.
    Ureña O; Hanson P
    Rev Biol Trop; 2010 Dec; 58(4):1157-63. PubMed ID: 21246986
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Morphological responses of Daphnia pulex to Chaoborus americanus kairomone in the presence and absence of metals.
    Hunter K; Pyle G
    Environ Toxicol Chem; 2004 May; 23(5):1311-6. PubMed ID: 15180385
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Regional coexistence and local dominance in Chaoborus: species sorting along a predation gradient.
    Garcia EA; Mittelbach GG
    Ecology; 2008 Jun; 89(6):1703-13. PubMed ID: 18589534
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus.
    Le Jeune AH; Bourdiol F; Aldamman L; Perron T; Amyot M; Pinel-Alloul B
    Environ Pollut; 2012 Jun; 165():100-8. PubMed ID: 22420993
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phenotypic plasticity of Daphnia pulex in the presence of invertebrate predators: morphological and life history responses.
    Lüning J
    Oecologia; 1992 Dec; 92(3):383-390. PubMed ID: 28312604
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Beyond body mass: how prey traits improve predictions of functional response parameters.
    Kalinoski RM; DeLong JP
    Oecologia; 2016 Feb; 180(2):543-50. PubMed ID: 26552379
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spatial and temporal distribution of gerrid (Heteroptera) and predation on microcrustaceans from a tropical shallow lake.
    Domingos AR; Arcifa MS
    Braz J Biol; 2017; 77(2):289-298. PubMed ID: 27533727
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Feeding History Affects Intraguild Interactions between Harmonia axyridis (Coleoptera: Coccinellidae) and Episyrphus balteatus (Diptera: Syrphidae).
    Ingels B; Van Hassel P; Van Leeuwen T; De Clercq P
    PLoS One; 2015; 10(6):e0128518. PubMed ID: 26030267
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web.
    Davenport JM; Chalcraft DR
    J Anim Ecol; 2012 Jan; 81(1):242-50. PubMed ID: 21950407
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Body size, body size ratio, and prey type influence the functional response of damselfly nymphs.
    Uiterwaal SF; Mares C; DeLong JP
    Oecologia; 2017 Nov; 185(3):339-346. PubMed ID: 28936547
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biology and feeding requirements of larval hunter flies Coenosia attenuata (Diptera: Muscidae) reared on larvae of the fungus gnat Bradysia impatiens (Diptera: Sciaridae).
    Ugine TA; Sensenbach EJ; Sanderson JP; Wraight SP
    J Econ Entomol; 2010 Aug; 103(4):1149-58. PubMed ID: 20857722
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Variation in copper effects on kairomone-mediated responses in Daphnia pulicaria.
    DeMille CM; Arnott SE; Pyle GG
    Ecotoxicol Environ Saf; 2016 Apr; 126():264-272. PubMed ID: 26773836
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Diurnal Changes of Zooplankton Community Reduction Rate at Lake Outlets and Related Environmental Factors.
    Czerniawski R; Sługocki Ł; Kowalska-Góralska M
    PLoS One; 2016; 11(7):e0158837. PubMed ID: 27392017
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanisms and feasibility of prey capture in ambush-feeding zooplankton.
    Kiørboe T; Andersen A; Langlois VJ; Jakobsen HH; Bohr T
    Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12394-9. PubMed ID: 19622725
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The response of life history defense of cladocerans under predation risk varies with the size and concentration of microplastics.
    Liu Q; Liu L; Huang J; Gu L; Sun Y; Zhang L; Lyu K; Yang Z
    J Hazard Mater; 2022 Apr; 427():127913. PubMed ID: 34865906
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Temperature effects on ballistic prey capture by a dragonfly larva.
    Quenta Herrera E; Casas J; Dangles O; Pincebourde S
    Ecol Evol; 2018 Apr; 8(8):4303-4311. PubMed ID: 29721299
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Attack or attacked: the sensory and fluid mechanical constraints of copepods' predator-prey interactions.
    Kiørboe T
    Integr Comp Biol; 2013 Nov; 53(5):821-31. PubMed ID: 23613321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.