These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30901605)

  • 1. Studying the influence of mass media and environmental factors on influenza virus transmission in the US Midwest.
    Niakan Kalhori SR; Ghazisaeedi M; Azizi R; Naserpour A
    Public Health; 2019 May; 170():17-22. PubMed ID: 30901605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the Conventional Influenza Epidemic Models Using Environmental Parameters in Iran.
    Naserpor A; Niakan Kalhori SR; Ghazisaeedi M; Azizi R; Hosseini Ravandi M; Sharafie S
    Healthc Inform Res; 2019 Jan; 25(1):27-32. PubMed ID: 30788178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling influenza transmission dynamics with media coverage data of the 2009 H1N1 outbreak in Korea.
    Kim Y; Barber AV; Lee S
    PLoS One; 2020; 15(6):e0232580. PubMed ID: 32525907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonality of Influenza A(H7N9) Virus in China-Fitting Simple Epidemic Models to Human Cases.
    Lin Q; Lin Z; Chiu AP; He D
    PLoS One; 2016; 11(3):e0151333. PubMed ID: 26963937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of climatological parameters in modeling and forecasting seasonal influenza transmission in Abidjan, Cote d'Ivoire.
    N'gattia AK; Coulibaly D; Nzussouo NT; Kadjo HA; Chérif D; Traoré Y; Kouakou BK; Kouassi PD; Ekra KD; Dagnan NS; Williams T; Tiembré I
    BMC Public Health; 2016 Sep; 16(1):972. PubMed ID: 27624302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters.
    Soebiyanto RP; Adimi F; Kiang RK
    PLoS One; 2010 Mar; 5(3):e9450. PubMed ID: 20209164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Media coverage and hospital notifications: Correlation analysis and optimal media impact duration to manage a pandemic.
    Yan Q; Tang S; Gabriele S; Wu J
    J Theor Biol; 2016 Feb; 390():1-13. PubMed ID: 26582723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Influenza Epidemic for United States.
    Zhou L; Li J; Shi D; Xu L; Huang SX
    Int J Environ Health Res; 2022 Jun; 32(6):1231-1237. PubMed ID: 33378220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring optimal control strategies in seasonally varying flu-like epidemics.
    Lee S; Chowell G
    J Theor Biol; 2017 Jan; 412():36-47. PubMed ID: 27693366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and statistical analysis of the spatio-temporal patterns of seasonal influenza in Israel.
    Huppert A; Barnea O; Katriel G; Yaari R; Roll U; Stone L
    PLoS One; 2012; 7(10):e45107. PubMed ID: 23056192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling seasonal influenza in Israel.
    Barnea O; Yaari R; Katriel G; Stone L
    Math Biosci Eng; 2011 Apr; 8(2):561-73. PubMed ID: 21631146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying the recovery procedure for the time-dependent transmission rate(s) in epidemic models.
    Mummert A
    J Math Biol; 2013 Sep; 67(3):483-507. PubMed ID: 22714651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data.
    Chowell G; Nishiura H; Bettencourt LM
    J R Soc Interface; 2007 Feb; 4(12):155-66. PubMed ID: 17254982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of seasonal and pandemic influenza transmission dynamics.
    Yang W; Lipsitch M; Shaman J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2723-8. PubMed ID: 25730851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving factors of influenza transmission in the Netherlands.
    te Beest DE; van Boven M; Hooiveld M; van den Dool C; Wallinga J
    Am J Epidemiol; 2013 Nov; 178(9):1469-77. PubMed ID: 24029683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling influenza A(H1N1) 2009 epidemics using a random network in a distributed computing environment.
    González-Parra G; Villanueva RJ; Ruiz-Baragaño J; Moraño JA
    Acta Trop; 2015 Mar; 143():29-35. PubMed ID: 25559047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When and why direct transmission models can be used for environmentally persistent pathogens.
    Benson L; Davidson RS; Green DM; Hoyle A; Hutchings MR; Marion G
    PLoS Comput Biol; 2021 Dec; 17(12):e1009652. PubMed ID: 34851954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal dynamics of recurrent epidemics.
    Stone L; Olinky R; Huppert A
    Nature; 2007 Mar; 446(7135):533-6. PubMed ID: 17392785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute humidity as a deterministic factor affecting seasonal influenza epidemics in Japan.
    Shoji M; Katayama K; Sano K
    Tohoku J Exp Med; 2011 Aug; 224(4):251-6. PubMed ID: 21705850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling seasonal influenza outbreak in a closed college campus: impact of pre-season vaccination, in-season vaccination and holidays/breaks.
    Nichol KL; Tummers K; Hoyer-Leitzel A; Marsh J; Moynihan M; McKelvey S
    PLoS One; 2010 Mar; 5(3):e9548. PubMed ID: 20209058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.