These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30901688)

  • 41. Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy.
    Li R; Li Z; Pambou E; Gutfreund P; Waigh TA; Webster JRP; Lu JR
    Langmuir; 2018 Feb; 34(5):1827-1833. PubMed ID: 29303580
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer.
    Park H; Lim C; Lee CJ; Kang J; Kim J; Choi M; Park H
    Nanotechnology; 2018 Oct; 29(41):415303. PubMed ID: 30028310
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of Graphene Based Membranes: Effect of Substrate Surface Properties on Monolayer Graphene Transfer.
    Kafiah F; Khan Z; Ibrahim A; Atieh M; Laoui T
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772446
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Defect-Free Graphene Synthesized Directly at 150 °C via Chemical Vapor Deposition with No Transfer.
    Park BJ; Choi JS; Eom JH; Ha H; Kim HY; Lee S; Shin H; Yoon SG
    ACS Nano; 2018 Feb; 12(2):2008-2016. PubMed ID: 29390178
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates.
    Khan A; Islam SM; Ahmed S; Kumar RR; Habib MR; Huang K; Hu M; Yu X; Yang D
    Adv Sci (Weinh); 2018 Nov; 5(11):1800050. PubMed ID: 30479910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Substrate-induced solvent intercalation for stable graphene doping.
    Kim HH; Yang JW; Jo SB; Kang B; Lee SK; Bong H; Lee G; Kim KS; Cho K
    ACS Nano; 2013 Feb; 7(2):1155-62. PubMed ID: 23368414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene.
    Shautsova V; Gilbertson AM; Black NC; Maier SA; Cohen LF
    Sci Rep; 2016 Jul; 6():30210. PubMed ID: 27443219
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition.
    De Fazio D; Purdie DG; Ott AK; Braeuninger-Weimer P; Khodkov T; Goossens S; Taniguchi T; Watanabe K; Livreri P; Koppens FHL; Hofmann S; Goykhman I; Ferrari AC; Lombardo A
    ACS Nano; 2019 Aug; 13(8):8926-8935. PubMed ID: 31322332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flexible and transparent dielectric film with a high dielectric constant using chemical vapor deposition-grown graphene interlayer.
    Kim JY; Lee J; Lee WH; Kholmanov IN; Suk JW; Kim T; Hao Y; Chou H; Akinwande D; Ruoff RS
    ACS Nano; 2014 Jan; 8(1):269-74. PubMed ID: 24303963
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transparent conductive graphene textile fibers.
    Neves AI; Bointon TH; Melo LV; Russo S; de Schrijver I; Craciun MF; Alves H
    Sci Rep; 2015 May; 5():9866. PubMed ID: 25952133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct Growth of Highly Stable Patterned Graphene on Dielectric Insulators using a Surface-Adhered Solid Carbon Source.
    Lee E; Lee SG; Lee HC; Jo M; Yoo MS; Cho K
    Adv Mater; 2018 Apr; 30(15):e1706569. PubMed ID: 29473234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural Integrity Preserving and Residue-Free Transfer of Large-Area Wrinkled Graphene onto Polymeric Substrates.
    Narute P; Sharbidre RS; Lee CJ; Park BC; Jung HJ; Kim JH; Hong SG
    ACS Nano; 2022 Jun; 16(6):9871-9882. PubMed ID: 35666252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene.
    Huet B; Raskin JP
    Nanoscale; 2018 Nov; 10(46):21898-21909. PubMed ID: 30431636
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.
    Zheng C; Huang L; Zhang H; Sun Z; Zhang Z; Zhang GJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16953-9. PubMed ID: 26203889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe.
    Buron JD; Pizzocchero F; Jessen BS; Booth TJ; Nielsen PF; Hansen O; Hilke M; Whiteway E; Jepsen PU; Bøggild P; Petersen DH
    Nano Lett; 2014 Nov; 14(11):6348-55. PubMed ID: 25317778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlling the nanoscale rippling of graphene with SiO2 nanoparticles.
    Osváth Z; Gergely-Fülöp E; Nagy N; Deák A; Nemes-Incze P; Jin X; Hwang C; Biró LP
    Nanoscale; 2014 Jun; 6(11):6030-6. PubMed ID: 24776641
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrafast Growth of Uniform Multi-Layer Graphene Films Directly on Silicon Dioxide Substrates.
    Zhou L; Wei S; Ge C; Zhao C; Guo B; Zhang J; Zhao J
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31266221
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring the reactivity of distinct electron transfer sites at CVD grown monolayer graphene through the selective electrodeposition of MoO
    García-Miranda Ferrari A; Foster CW; Brownson DAC; Whitehead KA; Banks CE
    Sci Rep; 2019 Sep; 9(1):12814. PubMed ID: 31492903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.