These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30901705)

  • 1. Rapid and quantitative detection of trace Sudan black B in dyed black rice by surface-enhanced Raman spectroscopy (SERS).
    Zhao Y; Yamaguchi Y; Liu C; Li M; Dou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():202-206. PubMed ID: 30901705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards SERS based applications in food analytics: lipophilic sensor layers for the detection of Sudan III in food matrices.
    Jahn M; Patze S; Bocklitz T; Weber K; Cialla-May D; Popp J
    Anal Chim Acta; 2015 Feb; 860():43-50. PubMed ID: 25682246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and Quantitative Analysis of Ediphenphos Residue in Rice Using Surface-Enhanced Raman Spectroscopy.
    Weng S; Wang F; Dong R; Qiu M; Zhao J; Huang L; Zhang D
    J Food Sci; 2018 Apr; 83(4):1179-1185. PubMed ID: 29538797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional paper-based SERS substrate for rapid and sensitive detection of Sudan dyes in herbal medicine.
    Wu M; Li P; Zhu Q; Wu M; Li H; Lu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():110-116. PubMed ID: 29438940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices.
    Di Anibal CV; Marsal LF; Callao MP; Ruisánchez I
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 87():135-41. PubMed ID: 22154269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor.
    Gao F; Hu Y; Chen D; Li-Chan ECY; Grant E; Lu X
    Talanta; 2015 Oct; 143():344-352. PubMed ID: 26078169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review.
    Xu ML; Gao Y; Han XX; Zhao B
    J Agric Food Chem; 2017 Aug; 65(32):6719-6726. PubMed ID: 28726388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Multiplexed Quantification of Banned Sudan Dyes Using Surface Enhanced Raman Scattering and Chemometrics.
    Alomar TS; AlMasoud N; Xu Y; Lima C; Akbali B; Maher S; Goodacre R
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.
    Rajabi M; Sabzalian S; Barfi B; Arghavani-Beydokhti S; Asghari A
    J Chromatogr A; 2015 Dec; 1425():42-50. PubMed ID: 26614171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paper swab based SERS detection of non-permitted colourants from dals and vegetables using a portable spectrometer.
    Kumar A; Santhanam V
    Anal Chim Acta; 2019 Dec; 1090():106-113. PubMed ID: 31655635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman and IR spectroscopic modality for authentication of turmeric powder.
    Chao K; Dhakal S; Schmidt WF; Qin J; Kim M; Peng Y; Huang Q
    Food Chem; 2020 Aug; 320():126567. PubMed ID: 32203830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis.
    Xie X; Pu H; Sun DW
    Crit Rev Food Sci Nutr; 2018; 58(16):2800-2813. PubMed ID: 28665689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace analysis of organic compounds in foods with surface-enhanced Raman spectroscopy: Methodology, progress, and challenges.
    Huang Y; Wang X; Lai K; Fan Y; Rasco BA
    Compr Rev Food Sci Food Saf; 2020 Mar; 19(2):622-642. PubMed ID: 33325168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman spectroscopy applied to food safety.
    Craig AP; Franca AS; Irudayaraj J
    Annu Rev Food Sci Technol; 2013; 4():369-80. PubMed ID: 23297774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative SERS studies by combining LOC-SERS with the standard addition method.
    Kämmer E; Olschewski K; Stöckel S; Rösch P; Weber K; Cialla-May D; Bocklitz T; Popp J
    Anal Bioanal Chem; 2015 Nov; 407(29):8925-9. PubMed ID: 26396080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food.
    Wu L; Pu H; Huang L; Sun DW
    Food Chem; 2020 Oct; 328():127105. PubMed ID: 32464556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive liquid-phase microextraction with solidification of floating organic droplet coupled with high-performance liquid chromatography for the determination of Sudan dyes in foodstuffs and water samples.
    Chen B; Huang Y
    J Agric Food Chem; 2014 Jun; 62(25):5818-26. PubMed ID: 24894629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. γ-Fe
    Kılınç E; Çelik KS; Bilgetekin H
    Food Chem; 2018 Mar; 242():533-537. PubMed ID: 29037726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid SERS detection of acid orange II and brilliant blue in food by using Fe
    Xie Y; Chen T; Guo Y; Cheng Y; Qian H; Yao W
    Food Chem; 2019 Jan; 270():173-180. PubMed ID: 30174032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Detection of Trace Level Cloxacillin in Food Samples Using Magnetic Molecularly Imprinted Polymer Extraction and Surface-Enhanced Raman Spectroscopy Nanopillars.
    Ashley J; Wu K; Hansen MF; Schmidt MS; Boisen A; Sun Y
    Anal Chem; 2017 Nov; 89(21):11484-11490. PubMed ID: 28952718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.