These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30901705)

  • 21. Gold Nanorods as Surface-Enhanced Raman Spectroscopy Substrates for Rapid and Sensitive Analysis of Allura Red and Sunset Yellow in Beverages.
    Ou Y; Wang X; Lai K; Huang Y; Rasco BA; Fan Y
    J Agric Food Chem; 2018 Mar; 66(11):2954-2961. PubMed ID: 29489346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly reproducible and sensitive silver nanorod array for the rapid detection of Allura Red in candy.
    Yao Y; Wang W; Tian K; Ingram WM; Cheng J; Qu L; Li H; Han C
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr; 195():165-171. PubMed ID: 29414574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new substrate for surface enhanced Raman scattering of dye Sudan molecules.
    Zhou X; Fang Y; Zhang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 May; 67(1):122-4. PubMed ID: 16945577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-level detections of Sudan I, II, III and IV in spices and Chili-containing foodstuffs using UPLC-ESI-MS/MS.
    Schummer C; Sassel J; Bonenberger P; Moris G
    J Agric Food Chem; 2013 Mar; 61(9):2284-9. PubMed ID: 23390927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Determination of Sudan Red dyes in eggs using liquid chromatography-tandem mass spectrometry and matrix solid-phase dispersion technique].
    Wang P; Guo S; Jing T; Hu X; Lin Y; Luo J; Song Q; Zhou Y; Mei S
    Se Pu; 2008 May; 26(3):353-7. PubMed ID: 18724675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy.
    Zhang D; Liang P; Chen W; Tang Z; Li C; Xiao K; Jin S; Ni D; Yu Z
    Mikrochim Acta; 2021 Oct; 188(11):370. PubMed ID: 34622367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of magnetic nanoparticles to detect Sudan dye adulteration in chilli powders.
    Yu X; Lee JK; Liu H; Yang H
    Food Chem; 2019 Nov; 299():125144. PubMed ID: 31323440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SERS-active Ag Nanostars Substrates for Sensitive Detection of Ethyl Carbamate in Wine.
    Li M; Zhao Y; Cui M; Wang C; Song Q
    Anal Sci; 2016; 32(7):725-8. PubMed ID: 27396651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fraud detection in crude palm oil using SERS combined with chemometrics.
    Yao-Say Solomon Adade S; Lin H; Jiang H; Haruna SA; Osei Barimah A; Zareef M; Akomeah Agyekum A; Adwoa Nkuma Johnson N; Mehedi Hassan M; Li H; Chen Q
    Food Chem; 2022 Sep; 388():132973. PubMed ID: 35447589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.
    He S; Xie W; Zhang W; Zhang L; Wang Y; Liu X; Liu Y; Du C
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():1092-9. PubMed ID: 25300041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New approach applying a pet fish air pump in liquid-phase microextraction for the determination of Sudan dyes in food samples by HPLC.
    Sricharoen P; Limchoowong N; Techawongstien S; Chanthai S
    J Sep Sci; 2017 Oct; 40(19):3848-3856. PubMed ID: 28748579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence against the existence of acetylated Sudan Black B.
    Lauder RM; Beynon AD
    Histochemistry; 1989; 93(2):213-6. PubMed ID: 2613557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Application of surface-enhanced Raman spectroscopy to the determination of trace chemical hazards in food products].
    Fan YX; Lai KQ; Huang YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1859-64. PubMed ID: 25269296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants.
    He X; Yang S; Xu T; Song Y; Zhang X
    Biosens Bioelectron; 2020 Mar; 152():112013. PubMed ID: 31941620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice.
    Luo H; Wang X; Huang Y; Lai K; Rasco BA; Fan Y
    J Sci Food Agric; 2018 Aug; 98(10):3892-3898. PubMed ID: 29364504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants.
    Shi R; Liu X; Ying Y
    J Agric Food Chem; 2018 Jul; 66(26):6525-6543. PubMed ID: 28920678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid detection of trace formaldehyde in food based on surface-enhanced Raman scattering coupled with assembled purge trap.
    Nie X; Chen Z; Tian Y; Chen S; Qu L; Fan M
    Food Chem; 2021 Mar; 340():127930. PubMed ID: 32871357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasensitive detection of Sudan I in food samples by a quantitative immunochromatographic assay.
    Deng D; Yang H; Liu C; Zhao K; Li J; Deng A
    Food Chem; 2019 Mar; 277():595-603. PubMed ID: 30502190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of Cadmium in Rice by Surface-enhanced Raman Spectroscopy Based on a Ratiometric Indicator and Conical Holed Enhancing Substrates.
    Zuo Q; Chen Y; Chen ZP; Yu RQ
    Anal Sci; 2018 Dec; 34(12):1405-1410. PubMed ID: 30197387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Figures of merit of a SERS method for Sudan I determination at traces levels.
    López MI; Ruisánchez I; Callao MP
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():237-41. PubMed ID: 23659906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.