These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 30901787)
1. Assessing nutrient responses and biomass quality for selection of appropriate paludiculture crops. Ren L; Eller F; Lambertini C; Guo WY; Brix H; Sorrell BK Sci Total Environ; 2019 May; 664():1150-1161. PubMed ID: 30901787 [TBL] [Abstract][Full Text] [Related]
2. Nutrient removal potential and biomass production by Phragmites australis and Typha latifolia on European rewetted peat and mineral soils. Geurts JJM; Oehmke C; Lambertini C; Eller F; Sorrell BK; Mandiola SR; Grootjans AP; Brix H; Wichtmann W; Lamers LPM; Fritz C Sci Total Environ; 2020 Dec; 747():141102. PubMed ID: 32795788 [TBL] [Abstract][Full Text] [Related]
3. The greenhouse gas emission effects of rewetting drained peatlands and growing wetland plants for biogas fuel production. Martens M; Karlsson NPE; Ehde PM; Mattsson M; Weisner SEB J Environ Manage; 2021 Jan; 277():111391. PubMed ID: 33049611 [TBL] [Abstract][Full Text] [Related]
4. Nutrient removal through autumn harvest of Phragmites australis and Thypha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent. Toet S; Bouwman M; Cevaal A; Verhoeven JT J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1133-56. PubMed ID: 15921271 [TBL] [Abstract][Full Text] [Related]
5. Paludiculture as paludifuture on Dutch peatlands: An environmental and economic analysis of Typha cultivation and insulation production. de Jong M; van Hal O; Pijlman J; van Eekeren N; Junginger M Sci Total Environ; 2021 Oct; 792():148161. PubMed ID: 34465063 [TBL] [Abstract][Full Text] [Related]
6. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants]. Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843 [TBL] [Abstract][Full Text] [Related]
7. Remediation of mercury-polluted soils using artificial wetlands. García-Mercadoa HD; Fernándezb G; Garzón-Zúñigac MA; Durán-Domínguez-de-Bazúaa MD Int J Phytoremediation; 2017 Jan; 19(1):3-13. PubMed ID: 27484186 [TBL] [Abstract][Full Text] [Related]
8. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review. Nsanganwimana F; Marchand L; Douay F; Mench M Int J Phytoremediation; 2014; 16(7-12):982-1017. PubMed ID: 24933898 [TBL] [Abstract][Full Text] [Related]
9. The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Calheiros CS; Rangel AO; Castro PM Arch Environ Contam Toxicol; 2008 Oct; 55(3):404-14. PubMed ID: 18214580 [TBL] [Abstract][Full Text] [Related]
10. Nitrogen immobilization may reduce invasibility of nutrient enriched plant community invaded by Phragmites australis. Uddin MN; Robinson RW; Asaeda T Sci Rep; 2020 Jan; 10(1):1601. PubMed ID: 32005878 [TBL] [Abstract][Full Text] [Related]
11. Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Zheng Y; Wang X; Dzakpasu M; Zhao Y; Ngo HH; Guo W; Ge Y; Xiong J Bioresour Technol; 2016 May; 207():134-41. PubMed ID: 26874442 [TBL] [Abstract][Full Text] [Related]
12. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Calheiros CS; Rangel AO; Castro PM Water Res; 2007 Apr; 41(8):1790-8. PubMed ID: 17320926 [TBL] [Abstract][Full Text] [Related]
13. Intraspecific variation in indirect plant-soil feedbacks influences a wetland plant invasion. Allen WJ; Meyerson LA; Flick AJ; Cronin JT Ecology; 2018 Jun; 99(6):1430-1440. PubMed ID: 29771449 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: potential applications in agriculture and forestry? Bonanno G; Cirelli GL; Toscano A; Lo Giudice R; Pavone P Sci Total Environ; 2013 May; 452-453():349-54. PubMed ID: 23534998 [TBL] [Abstract][Full Text] [Related]
16. Effects of plants competition on critical bacteria selection and pollutants dynamics in a long-term polyculture constructed wetland. Zheng Y; Yang D; Dzakpasu M; Yang Q; Liu Y; Zhang H; Zhang L; Wang XC; Zhao Y Bioresour Technol; 2020 Nov; 316():123927. PubMed ID: 32750641 [TBL] [Abstract][Full Text] [Related]
17. Plant species for floating treatment wetlands: A decade of experiments in North Italy. Barco A; Bona S; Borin M Sci Total Environ; 2021 Jan; 751():141666. PubMed ID: 33181991 [TBL] [Abstract][Full Text] [Related]
18. [Effects of Arbuscular Mycorrhizal Fungi on the Growth of Reeds in Wetland Soils with Different Salt Content]. Guo JY; Guo W; Bi N; Fu RY; Zhao WJ; Zhao RX; Wang LX Huan Jing Ke Xue; 2015 Apr; 36(4):1481-8. PubMed ID: 26164930 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of nitrogen and phosphorus removal by a surface-flow constructed wetland for polluted river water treatment. Dzakpasu M; Wang X; Zheng Y; Ge Y; Xiong J; Zhao Y Water Sci Technol; 2015; 71(6):904-12. PubMed ID: 25812101 [TBL] [Abstract][Full Text] [Related]
20. Effect of different plant species on nutrient removal and rhizospheric microorganisms distribution in horizontal-flow constructed wetlands. Meng P; Hu W; Pei H; Hou Q; Ji Y Environ Technol; 2014; 35(5-8):808-16. PubMed ID: 24645463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]