These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30901841)
1. A Dual Molecular Biointerface Combining RGD and KRSR Sequences Improves Osteoblastic Functions by Synergizing Integrin and Cell-Membrane Proteoglycan Binding. Hoyos-Nogués M; Falgueras-Batlle E; Ginebra MP; Manero JM; Gil J; Mas-Moruno C Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30901841 [TBL] [Abstract][Full Text] [Related]
2. Osteoblast response to titanium surfaces functionalized with extracellular matrix peptide biomimetics. Bell BF; Schuler M; Tosatti S; Textor M; Schwartz Z; Boyan BD Clin Oral Implants Res; 2011 Aug; 22(8):865-72. PubMed ID: 21244501 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)- and heparin (KRSR)-binding peptides. Broggini N; Tosatti S; Ferguson SJ; Schuler M; Textor M; Bornstein MM; Bosshardt DD; Buser D J Biomed Mater Res A; 2012 Mar; 100(3):703-11. PubMed ID: 22213622 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the response of cultured osteoblasts and osteoblasts outgrown from rat calvarial bone chips to nonfouling KRSR and FHRRIKA-peptide modified rough titanium surfaces. Schuler M; Hamilton DW; Kunzler TP; Sprecher CM; de Wild M; Brunette DM; Textor M; Tosatti SGP J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):517-527. PubMed ID: 19582855 [TBL] [Abstract][Full Text] [Related]
5. Nanofibrillar hydrogel scaffolds from recombinant protein-based polymers with integrin- and proteoglycan-binding domains. Włodarczyk-Biegun MK; Werten MW; Posadowska U; Storm IM; de Wolf FA; van den Beucken JJ; Leeuwenburgh SC; Cohen Stuart MA; Kamperman M J Biomed Mater Res A; 2016 Dec; 104(12):3082-3092. PubMed ID: 27449385 [TBL] [Abstract][Full Text] [Related]
6. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Sawyer AA; Hennessy KM; Bellis SL Biomaterials; 2007 Jan; 28(3):383-92. PubMed ID: 16952395 [TBL] [Abstract][Full Text] [Related]
7. Mimicking bone extracellular matrix: integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium. Fraioli R; Rechenmacher F; Neubauer S; Manero JM; Gil J; Kessler H; Mas-Moruno C Colloids Surf B Biointerfaces; 2015 Apr; 128():191-200. PubMed ID: 25637448 [TBL] [Abstract][Full Text] [Related]
8. Increased osteoblast adhesion on nanograined Ti modified with KRSR. Balasundaram G; Webster TJ J Biomed Mater Res A; 2007 Mar; 80(3):602-11. PubMed ID: 17031820 [TBL] [Abstract][Full Text] [Related]
9. Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo. Fraioli R; Dashnyam K; Kim JH; Perez RA; Kim HW; Gil J; Ginebra MP; Manero JM; Mas-Moruno C Acta Biomater; 2016 Oct; 43():269-281. PubMed ID: 27481289 [TBL] [Abstract][Full Text] [Related]
10. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bagno A; Piovan A; Dettin M; Chiarion A; Brun P; Gambaretto R; Fontana G; Di Bello C; Palù G; Castagliuolo I Bone; 2007 Mar; 40(3):693-9. PubMed ID: 17142122 [TBL] [Abstract][Full Text] [Related]
11. Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides. Auernheimer J; Zukowski D; Dahmen C; Kantlehner M; Enderle A; Goodman SL; Kessler H Chembiochem; 2005 Nov; 6(11):2034-40. PubMed ID: 16206226 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Brun P; Scorzeto M; Vassanelli S; Castagliuolo I; Palù G; Ghezzo F; Messina GM; Iucci G; Battaglia V; Sivolella S; Bagno A; Polzonetti G; Marletta G; Dettin M Acta Biomater; 2013 Apr; 9(4):6105-15. PubMed ID: 23261922 [TBL] [Abstract][Full Text] [Related]
14. The osteoinduction of RGD and Mg ion functionalized bioactive zirconia coating. Huang Z; Wang Z; Li C; Zhou N; Liu F; Lan J J Mater Sci Mater Med; 2019 Aug; 30(8):95. PubMed ID: 31414276 [TBL] [Abstract][Full Text] [Related]
15. Increased preosteoblast adhesion and osteogenic gene expression on TiO2 nanotubes modified with KRSR. Sun S; Yu W; Zhang Y; Zhang F J Mater Sci Mater Med; 2013 Apr; 24(4):1079-91. PubMed ID: 23371766 [TBL] [Abstract][Full Text] [Related]
17. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Petrie TA; Capadona JR; Reyes CD; García AJ Biomaterials; 2006 Nov; 27(31):5459-70. PubMed ID: 16846640 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of RGD peptide on HA coating through a chemical bonding approach. Yang C; Cheng K; Weng W; Yang C J Mater Sci Mater Med; 2009 Nov; 20(11):2349-52. PubMed ID: 19521750 [TBL] [Abstract][Full Text] [Related]
19. In vitro kinetic study of growth and mineralization of osteoblast-like cells (Saos-2) on titanium surface coated with a RGD functionalized bisphosphonate. Beuvelot J; Portet D; Lecollinet G; Moreau MF; Baslé MF; Chappard D; Libouban H J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):873-81. PubMed ID: 19353573 [TBL] [Abstract][Full Text] [Related]
20. Functionalization of dental implant surfaces using adhesion molecules. Schliephake H; Scharnweber D; Dard M; Sewing A; Aref A; Roessler S J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):88-96. PubMed ID: 15786448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]