These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30902004)

  • 1. Linear scaling algorithm for tight-binding molecular dynamics simulations.
    He ZH; Ye XB; Pan BC
    J Chem Phys; 2019 Mar; 150(11):114107. PubMed ID: 30902004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.
    Negre CF; Mniszewski SM; Cawkwell MJ; Bock N; Wall ME; Niklasson AM
    J Chem Theory Comput; 2016 Jul; 12(7):3063-73. PubMed ID: 27267207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
    Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P
    J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dcdftbmd: Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2019 Jun; 40(15):1538-1549. PubMed ID: 30828839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended Energy Divide-and-Conquer Method Based on Charge Conservation.
    Song GL; Li ZH; Fan KN
    J Chem Theory Comput; 2013 Apr; 9(4):1992-9. PubMed ID: 26583549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel Implementation of Large-Scale Linear Scaling Density Functional Theory Calculations With Numerical Atomic Orbitals in HONPAS.
    Luo Z; Qin X; Wan L; Hu W; Yang J
    Front Chem; 2020; 8():589910. PubMed ID: 33324611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations.
    Kobayashi M; Nakai H
    J Chem Phys; 2008 Jul; 129(4):044103. PubMed ID: 18681630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regularized Localized Molecular Orbitals in a Divide-and-Conquer Approach for Linear Scaling Calculations.
    Peng L; Peng D; Gu FL; Yang W
    J Chem Theory Comput; 2022 May; 18(5):2975-2982. PubMed ID: 35416665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divide-and-Conquer Hartree-Fock Calculations on Proteins.
    He X; Merz KM
    J Chem Theory Comput; 2010 Jan; 6(2):405-411. PubMed ID: 20401160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A variational linear-scaling framework to build practical, efficient next-generation orbital-based quantum force fields.
    Giese TJ; Chen H; Dissanayake T; Giambaşu GM; Heldenbrand H; Huang M; Kuechler ER; Lee TS; Panteva MT; Radak BK; York DM
    J Chem Theory Comput; 2013 Mar; 9(3):1417-1427. PubMed ID: 23814506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics.
    Mniszewski SM; Cawkwell MJ; Wall ME; Mohd-Yusof J; Bock N; Germann TC; Niklasson AM
    J Chem Theory Comput; 2015 Oct; 11(10):4644-54. PubMed ID: 26574255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Linear-Scaling DFT with Subsystem DFT in Born-Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution.
    Andermatt S; Cha J; Schiffmann F; VandeVondele J
    J Chem Theory Comput; 2016 Jul; 12(7):3214-27. PubMed ID: 27244103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations.
    Nishimura Y; Nakai H
    J Chem Phys; 2023 Feb; 158(5):054106. PubMed ID: 36754823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A variational method for density functional theory calculations on metallic systems with thousands of atoms.
    Ruiz-Serrano Á; Skylaris CK
    J Chem Phys; 2013 Aug; 139(5):054107. PubMed ID: 23927243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2020 Jul; 41(19):1759-1772. PubMed ID: 32358918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divide-and-Conquer-Type Density-Functional Tight-Binding Molecular Dynamics Simulations of Proton Diffusion in a Bulk Water System.
    Nakai H; Sakti AW; Nishimura Y
    J Phys Chem B; 2016 Jan; 120(1):217-21. PubMed ID: 26694784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel implementation of efficient charge-charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations.
    Nishimura Y; Nakai H
    J Comput Chem; 2018 Jan; 39(2):105-116. PubMed ID: 29047123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water.
    Sakti AW; Nishimura Y; Nakai H
    J Phys Chem B; 2017 Feb; 121(6):1362-1371. PubMed ID: 28112934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.