These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3090215)

  • 21. Photoreceptor maintenance and degeneration in the norpA (no receptor potential-A) mutant of Drosophila melanogaster.
    Stark WS; Sapp R; Carlson SD
    J Neurogenet; 1989 Jan; 5(1):49-59. PubMed ID: 2495345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster.
    Helfrich-Förster C
    Microsc Res Tech; 2003 Oct; 62(2):94-102. PubMed ID: 12966496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noise-robust recognition of wide-field motion direction and the underlying neural mechanisms in Drosophila melanogaster.
    Suzuki Y; Ikeda H; Miyamoto T; Miyakawa H; Seki Y; Aonishi T; Morimoto T
    Sci Rep; 2015 May; 5():10253. PubMed ID: 25974721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elementary detectors for vertical movement in the visual system of Drosophila.
    Buchner E; Götz KG; Straub C
    Biol Cybern; 1978 Dec; 31(4):235-42. PubMed ID: 104742
    [No Abstract]   [Full Text] [Related]  

  • 25. Structure of retinular cells in a Drosophila melanogaster visual mutant, rdgA, at early stages of degeneration.
    Matsumoto E; Hirosawa K; Takagawa K; Hotta Y
    Cell Tissue Res; 1988 May; 252(2):293-300. PubMed ID: 3133115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The free-flight response of Drosophila to motion of the visual environment.
    Mronz M; Lehmann FO
    J Exp Biol; 2008 Jul; 211(Pt 13):2026-45. PubMed ID: 18552291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The protocadherin Flamingo is required for axon target selection in the Drosophila visual system.
    Lee RC; Clandinin TR; Lee CH; Chen PL; Meinertzhagen IA; Zipursky SL
    Nat Neurosci; 2003 Jun; 6(6):557-63. PubMed ID: 12754514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural cell types surviving congenital sensory deprivation in the optic lobes of Drosophila melanogaster.
    Fischbach KF
    Dev Biol; 1983 Jan; 95(1):1-18. PubMed ID: 6402394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila.
    Duistermars BJ; Chow DM; Condro M; Frye MA
    J Exp Biol; 2007 Sep; 210(Pt 18):3218-27. PubMed ID: 17766299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex.
    Strauss R; Hanesch U; Kinkelin M; Wolf R; Heisenberg M
    J Neurogenet; 1992 Sep; 8(3):125-55. PubMed ID: 1460532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress.
    Pesah Y; Pham T; Burgess H; Middlebrooks B; Verstreken P; Zhou Y; Harding M; Bellen H; Mardon G
    Development; 2004 May; 131(9):2183-94. PubMed ID: 15073152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional divisions for visual processing in the central brain of flying Drosophila.
    Weir PT; Dickinson MH
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):E5523-32. PubMed ID: 26324910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locomotor control by the central complex in Drosophila-An analysis of the tay bridge mutant.
    Poeck B; Triphan T; Neuser K; Strauss R
    Dev Neurobiol; 2008 Jul; 68(8):1046-58. PubMed ID: 18446784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster.
    Meinertzhagen IA; O'Neil SD
    J Comp Neurol; 1991 Mar; 305(2):232-63. PubMed ID: 1902848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of an indirect flight muscle in a muscle-specific mutant of Drosophila melanogaster.
    Costello WJ; Wyman RJ
    Dev Biol; 1986 Nov; 118(1):247-58. PubMed ID: 3095162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster.
    Suri V; Qian Z; Hall JC; Rosbash M
    Neuron; 1998 Jul; 21(1):225-34. PubMed ID: 9697866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ontogeny of flight initiation in the fly Drosophila melanogaster: implications for the giant fibre system.
    Hammond S; O'Shea M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Nov; 193(11):1125-37. PubMed ID: 17851667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gadd45 expression correlates with age dependent neurodegeneration in Drosophila melanogaster.
    Bgatova N; Dubatolova T; Omelyanchuk L; Plyusnina E; Shaposhnikov M; Moskalev A
    Biogerontology; 2015 Feb; 16(1):53-61. PubMed ID: 25252831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual control of straight flight in Drosophila melanogaster.
    Wolf R; Heisenberg M
    J Comp Physiol A; 1990 Jul; 167(2):269-83. PubMed ID: 2120434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic dissection of the anterior optic tract of Drosophila melanogaster.
    Fischbach KF; Lyly-Hünerberg I
    Cell Tissue Res; 1983; 231(3):551-63. PubMed ID: 6409413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.