These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30902249)

  • 1. Stem and progenitor cells in skeletal development.
    Ono N; Balani DH; Kronenberg HM
    Curr Top Dev Biol; 2019; 133():1-24. PubMed ID: 30902249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal stem and progenitor cells in bone development and repair.
    Trompet D; Melis S; Chagin AS; Maes C
    J Bone Miner Res; 2024 Jul; 39(6):633-654. PubMed ID: 38696703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth plate skeletal stem cells and their transition from cartilage to bone.
    Matsushita Y; Ono W; Ono N
    Bone; 2020 Jul; 136():115359. PubMed ID: 32276155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal stem cells: insights into maintaining and regenerating the skeleton.
    Serowoky MA; Arata CE; Crump JG; Mariani FV
    Development; 2020 Mar; 147(5):. PubMed ID: 32161063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting zone of the growth plate houses a unique class of skeletal stem cells.
    Mizuhashi K; Ono W; Matsushita Y; Sakagami N; Takahashi A; Saunders TL; Nagasawa T; Kronenberg HM; Ono N
    Nature; 2018 Nov; 563(7730):254-258. PubMed ID: 30401834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal Stem Cells for Bone Development and Repair: Diversity Matters.
    Matsushita Y; Ono W; Ono N
    Curr Osteoporos Rep; 2020 Jun; 18(3):189-198. PubMed ID: 32172443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond.
    Hallett SA; Ono W; Ono N
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair.
    Minear S; Leucht P; Miller S; Helms JA
    J Bone Miner Res; 2010 Jun; 25(6):1196-207. PubMed ID: 20200943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone Marrow Stromal Cell Assays: In Vitro and In Vivo.
    Robey PG; Kuznetsov SA; Bianco P; Riminucci M
    Methods Mol Biol; 2021; 2230():379-396. PubMed ID: 33197027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell transcriptomics of LepR-positive skeletal cells reveals heterogeneous stress-dependent stem and progenitor pools.
    Mo C; Guo J; Qin J; Zhang X; Sun Y; Wei H; Cao D; Zhang Y; Zhao C; Xiong Y; Zhang Y; Sun Y; Shen L; Yue R
    EMBO J; 2022 Feb; 41(4):e108415. PubMed ID: 34957577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development.
    Matsunobu T; Torigoe K; Ishikawa M; de Vega S; Kulkarni AB; Iwamoto Y; Yamada Y
    Dev Biol; 2009 Aug; 332(2):325-38. PubMed ID: 19501582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of adult human skeletal cells in different tissues reveals a CD90
    Cao Y; Bolam SM; Boss AL; Murray HC; Munro JT; Poulsen RC; Dalbeth N; Brooks AES; Matthews BG
    Bone; 2024 Jan; 178():116926. PubMed ID: 37793499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.
    Leucht P; Kim JB; Amasha R; James AW; Girod S; Helms JA
    Development; 2008 Sep; 135(17):2845-54. PubMed ID: 18653558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-KIT Expression Distinguishes Fetal from Postnatal Skeletal Progenitors.
    He DD; Tang XT; Dong W; Cui G; Peng G; Yin X; Chen Y; Jing N; Zhou BO
    Stem Cell Reports; 2020 Apr; 14(4):614-630. PubMed ID: 32220331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracing the skeletal progenitor transition during postnatal bone formation.
    Shu HS; Liu YL; Tang XT; Zhang XS; Zhou B; Zou W; Zhou BO
    Cell Stem Cell; 2021 Dec; 28(12):2122-2136.e3. PubMed ID: 34499868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment.
    Hallett SA; Matsushita Y; Ono W; Sakagami N; Mizuhashi K; Tokavanich N; Nagata M; Zhou A; Hirai T; Kronenberg HM; Ono N
    Elife; 2021 Jul; 10():. PubMed ID: 34309509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telomerase expression marks transitional growth-associated skeletal progenitor/stem cells.
    Carlone DL; Riba-Wolman RD; Deary LT; Tovaglieri A; Jiang L; Ambruzs DM; Mead BE; Shah MS; Lengner CJ; Jaenisch R; Breault DT
    Stem Cells; 2021 Mar; 39(3):296-305. PubMed ID: 33438789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible Contribution of Wnt-Responsive Chondroprogenitors to the Postnatal Murine Growth Plate.
    Usami Y; Gunawardena AT; Francois NB; Otsuru S; Takano H; Hirose K; Matsuoka M; Suzuki A; Huang J; Qin L; Iwamoto M; Yang W; Toyosawa S; Enomoto-Iwamoto M
    J Bone Miner Res; 2019 May; 34(5):964-974. PubMed ID: 30602070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periosteal stem cells control growth plate stem cells during postnatal skeletal growth.
    Tsukasaki M; Komatsu N; Negishi-Koga T; Huynh NC; Muro R; Ando Y; Seki Y; Terashima A; Pluemsakunthai W; Nitta T; Nakamura T; Nakashima T; Ohba S; Akiyama H; Okamoto K; Baron R; Takayanagi H
    Nat Commun; 2022 Jul; 13(1):4166. PubMed ID: 35851381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrous periosteum repairs bone fracture and maintains the healed bone throughout mouse adulthood.
    Liu YL; Tang XT; Shu HS; Zou W; Zhou BO
    Dev Cell; 2024 May; 59(9):1192-1209.e6. PubMed ID: 38554700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.