These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30902312)

  • 1. Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian α-amylase and α-glucosidases.
    Lim J; Zhang X; Ferruzzi MG; Hamaker BR
    Food Chem; 2019 Aug; 288():413-421. PubMed ID: 30902312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase.
    Lim J; Ferruzzi MG; Hamaker BR
    Food Chem; 2022 Feb; 370():130981. PubMed ID: 34500290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of flavonoids with α-amylase and starch slowing down its digestion.
    Takahama U; Hirota S
    Food Funct; 2018 Feb; 9(2):677-687. PubMed ID: 29292445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids.
    Tadera K; Minami Y; Takamatsu K; Matsuoka T
    J Nutr Sci Vitaminol (Tokyo); 2006 Apr; 52(2):149-53. PubMed ID: 16802696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of starch digestion by flavonoids: Role of flavonoid-amylase binding kinetics.
    D'Costa AS; Bordenave N
    Food Chem; 2021 Mar; 341(Pt 2):128256. PubMed ID: 33035827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures required of flavonoids for inhibiting digestive enzymes.
    Cao H; Chen X
    Anticancer Agents Med Chem; 2012 Oct; 12(8):929-39. PubMed ID: 22292767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maltoheptaoside hydrolysis with chromatographic detection and starch hydrolysis with reducing sugar analysis: Comparison of assays allows assessment of the roles of direct α-amylase inhibition and starch complexation.
    Visvanathan R; Houghton MJ; Williamson G
    Food Chem; 2021 May; 343():128423. PubMed ID: 33168261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on the Influences of Five Food-Borne Polyphenols on
    Ren S; Li K; Liu Z
    J Agric Food Chem; 2019 Aug; 67(31):8617-8625. PubMed ID: 31293160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuous coupled spectrophotometric assay for debranching enzyme activity using reducing end-specific α-glucosidase.
    Do VH; Tran PL; Ni L; Park KH
    Anal Biochem; 2016 Jan; 492():21-6. PubMed ID: 26403601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.
    Dhital S; Lin AH; Hamaker BR; Gidley MJ; Muniandy A
    PLoS One; 2013; 8(4):e62546. PubMed ID: 23638112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure activity relationships of flavonoids as potent alpha-amylase inhibitors.
    Yuan E; Liu B; Wei Q; Yang J; Chen L; Li Q
    Nat Prod Commun; 2014 Aug; 9(8):1173-6. PubMed ID: 25233601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of Native Flavanols during Fermentation and Roasting Does Not Necessarily Reduce Digestive Enzyme-Inhibiting Bioactivities of Cocoa.
    Ryan CM; Khoo W; Ye L; Lambert JD; O'Keefe SF; Neilson AP
    J Agric Food Chem; 2016 May; 64(18):3616-25. PubMed ID: 27094258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multi-targets integrated fingerprinting for screening anti-diabetic compounds from a Chinese medicine Jinqi Jiangtang Tablet.
    Chang YX; Ge AH; Donnapee S; Li J; Bai Y; Liu J; He J; Yang X; Song LJ; Zhang BL; Gao XM
    J Ethnopharmacol; 2015 Apr; 164():210-22. PubMed ID: 25698248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches.
    Zhang Y; Yang Z; Liu G; Wu Y; Ouyang J
    Food Chem; 2020 Sep; 324():126847. PubMed ID: 32344340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms.
    Yang JP; He H; Lu YH
    J Agric Food Chem; 2014 Aug; 62(31):7760-70. PubMed ID: 25019533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quercetin slow-release system delays starch digestion via inhibiting transporters and enzymes.
    Wang L; Ma R; Tian Y
    Food Chem; 2024 Dec; 461():140855. PubMed ID: 39167947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary polyphenols modulate starch digestion and glycaemic level: a review.
    Sun L; Miao M
    Crit Rev Food Sci Nutr; 2020; 60(4):541-555. PubMed ID: 30799629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of alpha-amylase inhibitor activity of phaseolamin from kidney bean (Phaseolus vulgaris) in dietary supplements by HPAEC-PAD.
    Mosca M; Boniglia C; Carratù B; Giammarioli S; Nera V; Sanzini E
    Anal Chim Acta; 2008 Jun; 617(1-2):192-5. PubMed ID: 18486657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system.
    Hansawasdi C; Kawabata J; Kasai T
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2087-9. PubMed ID: 11676026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR).
    Martinez-Gonzalez AI; Díaz-Sánchez ÁG; de la Rosa LA; Bustos-Jaimes I; Alvarez-Parrilla E
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():437-447. PubMed ID: 30172871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.