BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30902345)

  • 1. Newest Methods for Detecting Structural Variations.
    De Coster W; Van Broeckhoven C
    Trends Biotechnol; 2019 Sep; 37(9):973-982. PubMed ID: 30902345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1D Genome Sequencing on the Oxford Nanopore MinION.
    Goodwin S; Wappel R; McCombie WR
    Curr Protoc Hum Genet; 2017 Jul; 94():18.11.1-18.11.14. PubMed ID: 28696556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ConcatSeq: A method for increasing throughput of single molecule sequencing by concatenating short DNA fragments.
    Schlecht U; Mok J; Dallett C; Berka J
    Sci Rep; 2017 Jul; 7(1):5252. PubMed ID: 28701704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted short read sequencing and assembly of re-arrangements and candidate gene loci provide megabase diplotypes.
    Shin G; Greer SU; Xia LC; Lee H; Zhou J; Boles TC; Ji HP
    Nucleic Acids Res; 2019 Nov; 47(19):e115. PubMed ID: 31350896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide reconstruction of complex structural variants using read clouds.
    Spies N; Weng Z; Bishara A; McDaniel J; Catoe D; Zook JM; Salit M; West RB; Batzoglou S; Sidow A
    Nat Methods; 2017 Sep; 14(9):915-920. PubMed ID: 28714986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-read sequencing for rare human genetic diseases.
    Mitsuhashi S; Matsumoto N
    J Hum Genet; 2020 Jan; 65(1):11-19. PubMed ID: 31558760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing.
    Zheng GX; Lau BT; Schnall-Levin M; Jarosz M; Bell JM; Hindson CM; Kyriazopoulou-Panagiotopoulou S; Masquelier DA; Merrill L; Terry JM; Mudivarti PA; Wyatt PW; Bharadwaj R; Makarewicz AJ; Li Y; Belgrader P; Price AD; Lowe AJ; Marks P; Vurens GM; Hardenbol P; Montesclaros L; Luo M; Greenfield L; Wong A; Birch DE; Short SW; Bjornson KP; Patel P; Hopmans ES; Wood C; Kaur S; Lockwood GK; Stafford D; Delaney JP; Wu I; Ordonez HS; Grimes SM; Greer S; Lee JY; Belhocine K; Giorda KM; Heaton WH; McDermott GP; Bent ZW; Meschi F; Kondov NO; Wilson R; Bernate JA; Gauby S; Kindwall A; Bermejo C; Fehr AN; Chan A; Saxonov S; Ness KD; Hindson BJ; Ji HP
    Nat Biotechnol; 2016 Mar; 34(3):303-11. PubMed ID: 26829319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape?
    Hamim I; Sekine KT; Komatsu K
    Plant Mol Biol; 2022 Dec; 110(6):469-484. PubMed ID: 35962900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural variation analysis with strobe reads.
    Ritz A; Bashir A; Raphael BJ
    Bioinformatics; 2010 May; 26(10):1291-8. PubMed ID: 20378554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate detection of complex structural variations using single-molecule sequencing.
    Sedlazeck FJ; Rescheneder P; Smolka M; Fang H; Nattestad M; von Haeseler A; Schatz MC
    Nat Methods; 2018 Jun; 15(6):461-468. PubMed ID: 29713083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of long read sequencing in rare diseases: The longer, the better?
    Yu SY; Xi YL; Xu FQ; Zhang J; Liu YS
    Eur J Med Genet; 2023 Dec; 66(12):104871. PubMed ID: 38832911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical sequencing: From raw data to diagnosis with lifetime value.
    Caspar SM; Dubacher N; Kopps AM; Meienberg J; Henggeler C; Matyas G
    Clin Genet; 2018 Mar; 93(3):508-519. PubMed ID: 29206278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of structural variants with single molecule and hybrid sequencing approaches.
    Ritz A; Bashir A; Sindi S; Hsu D; Hajirasouliha I; Raphael BJ
    Bioinformatics; 2014 Dec; 30(24):3458-66. PubMed ID: 25355789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-read sequencing in deciphering human genetics to a greater depth.
    Midha MK; Wu M; Chiu KP
    Hum Genet; 2019 Dec; 138(11-12):1201-1215. PubMed ID: 31538236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches to long-read sequencing in a clinical setting to improve diagnostic rate.
    Sanford Kobayashi E; Batalov S; Wenger AM; Lambert C; Dhillon H; Hall RJ; Baybayan P; Ding Y; Rego S; Wigby K; Friedman J; Hobbs C; Bainbridge MN
    Sci Rep; 2022 Oct; 12(1):16945. PubMed ID: 36210382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of structural variation calling: Simulation, identification, and visualization.
    Lei Y; Meng Y; Guo X; Ning K; Bian Y; Li L; Hu Z; Anashkina AA; Jiang Q; Dong Y; Zhu X
    Comput Biol Med; 2022 Jun; 145():105534. PubMed ID: 35585730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting structural variations in the human genome using next generation sequencing.
    Xi R; Kim TM; Park PJ
    Brief Funct Genomics; 2010 Dec; 9(5-6):405-15. PubMed ID: 21216738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Race in a genome: long read sequencing, ethnicity-specific reference genomes and the shifting horizon of race.
    Kowal E; Llamas B
    J Anthropol Sci; 2019 Dec; 96():91-106. PubMed ID: 31589588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Sequencing and Analysis Methods in Chronic Lymphocytic Leukemia.
    Quesada V; Araujo-Voces M; Pérez-Silva JG; Velasco G; López-Otín C
    Methods Mol Biol; 2019; 1881():319-325. PubMed ID: 30350214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decade of structural variants: description, history and methods to detect structural variation.
    Escaramís G; Docampo E; Rabionet R
    Brief Funct Genomics; 2015 Sep; 14(5):305-14. PubMed ID: 25877305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.