These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30902417)

  • 1. The Dresden in-situ (S)TEM special with a continuous-flow liquid-helium cryostat.
    Börrnert F; Kern F; Harder F; Riedel T; Müller H; Büchner B; Lubk A
    Ultramicroscopy; 2019 Aug; 203():12-20. PubMed ID: 30902417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research.
    Hodnik N; Dehm G; Mayrhofer KJ
    Acc Chem Res; 2016 Sep; 49(9):2015-22. PubMed ID: 27541965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flexible multi-stimuli in situ (S)TEM: concept, optical performance, and outlook.
    Börrnert F; Müller H; Riedel T; Linck M; Kirkland AI; Haider M; Büchner B; Lichte H
    Ultramicroscopy; 2015 Apr; 151():31-36. PubMed ID: 25624019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4D electron microscopy: principles and applications.
    Flannigan DJ; Zewail AH
    Acc Chem Res; 2012 Oct; 45(10):1828-39. PubMed ID: 22967215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared nanoscopy down to liquid helium temperatures.
    Lang D; Döring J; Nörenberg T; Butykai Á; Kézsmárki I; Schneider H; Winnerl S; Helm M; Kehr SC; Eng LM
    Rev Sci Instrum; 2018 Mar; 89(3):033702. PubMed ID: 29604801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operation of a continuous flow liquid helium magnetic microscopy cryostat as a closed cycle system.
    Barr K; Cookson T; Lagoudakis KG
    Rev Sci Instrum; 2021 Dec; 92(12):123701. PubMed ID: 34972427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-Resolution Cryo-STEM Across Continuously Variable Temperatures.
    Goodge BH; Bianco E; Schnitzer N; Zandbergen HW; Kourkoutis LF
    Microsc Microanal; 2020 Jun; 26(3):439-446. PubMed ID: 32501193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recondensation performance of liquid helium cryostat for a 28 GHz electron cyclotron resonance ion source.
    Choi S; Lee BS; Park JY; Ok JW; Shin CS; Yoon JH; Won MS; Kim BC
    Rev Sci Instrum; 2014 Feb; 85(2):02A915. PubMed ID: 24593494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the design and implementation of a novel impedance chamber based variable temperature regulator at liquid helium temperatures.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2010 Apr; 81(4):045112. PubMed ID: 20441373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally induced alloying processes in a bimetallic system at the nanoscale: AgAu sub-5 nm core-shell particles studied at atomic resolution.
    Lasserus M; Schnedlitz M; Knez D; Messner R; Schiffmann A; Lackner F; Hauser AW; Hofer F; Ernst WE
    Nanoscale; 2018 Jan; 10(4):2017-2024. PubMed ID: 29319708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid cell transmission electron microscopy and its applications.
    Pu S; Gong C; Robertson AW
    R Soc Open Sci; 2020 Jan; 7(1):191204. PubMed ID: 32218950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooling an optical fiber to 4.5 K by indirect thermal contact with a liquid-helium flow and spectroscopic temperature measurements.
    Hashimoto D; Shimizu K
    Rev Sci Instrum; 2008 Sep; 79(9):093102. PubMed ID: 19044399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid helium cryostat with internal fluorescence detection for x-ray absorption studies in the 2-6 keV energy region.
    Holman KL; Latimer MJ; Yachandra VK
    Rev Sci Instrum; 2004; 75(6):2056-2060. PubMed ID: 25057214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature martensite relaxation in Co-Ni-Ga shape memory alloy monocrystal revealed using in situ cooling, transmission electron microscopy and low rate calorimetry.
    Żak A; Dańczak A; Dudziński W
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2020 Aug; 76(Pt 4):563-571. PubMed ID: 32831275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography.
    Iancu CV; Wright ER; Heymann JB; Jensen GJ
    J Struct Biol; 2006 Mar; 153(3):231-40. PubMed ID: 16427786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Special Issue: Radiation Damage in Materials-Helium Effects.
    Wang Y; Hattar K
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Cryostat Applicable to Long-Wavelength Light-Driven Scanning Probe Microscopy.
    Xiang K; Xie C; Feng Q; Wang Z; Dai G; Wang J; Zhang J; Meng W; Hou Y; Lu Q; Lu Y
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy.
    Gai PL; Boyes ED
    Microsc Res Tech; 2009 Mar; 72(3):153-64. PubMed ID: 19140163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved focused ion beam target preparation of (S)TEM specimen--a method for obtaining ultrathin lamellae.
    Lechner L; Biskupek J; Kaiser U
    Microsc Microanal; 2012 Apr; 18(2):379-84. PubMed ID: 22436335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes.
    Mele L; Konings S; Dona P; Evertz F; Mitterbauer C; Faber P; Schampers R; Jinschek JR
    Microsc Res Tech; 2016 Apr; 79(4):239-50. PubMed ID: 26818213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.