BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 30902619)

  • 1. Novel proteomic changes in brain mitochondria provide insights into mitochondrial dysfunction in mouse models of Huntington's disease.
    Agrawal S; Fox JH
    Mitochondrion; 2019 Jul; 47():318-329. PubMed ID: 30902619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative metabolism in YAC128 mouse model of Huntington's disease.
    Hamilton J; Pellman JJ; Brustovetsky T; Harris RA; Brustovetsky N
    Hum Mol Genet; 2015 Sep; 24(17):4862-78. PubMed ID: 26041817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability.
    Fu Z; Liu F; Liu C; Jin B; Jiang Y; Tang M; Qi X; Guo X
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1428-1435. PubMed ID: 30802639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically.
    Agrawal S; Fox J; Thyagarajan B; Fox JH
    Free Radic Biol Med; 2018 May; 120():317-329. PubMed ID: 29625173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington's disease.
    Joshi AU; Ebert AE; Haileselassie B; Mochly-Rosen D
    J Mol Cell Cardiol; 2019 Feb; 127():125-133. PubMed ID: 30550751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease.
    Berggren KL; Chen J; Fox J; Miller J; Dodds L; Dugas B; Vargas L; Lothian A; McAllum E; Volitakis I; Roberts B; Bush AI; Fox JH
    Redox Biol; 2015; 4():363-74. PubMed ID: 25703232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease.
    Li E; Park HR; Hong CP; Kim Y; Choi J; Lee S; Park HJ; Lee B; Kim TA; Kim SJ; Kim HS; Song J
    Cell Prolif; 2020 Oct; 53(10):e12893. PubMed ID: 32865873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential proteomic and genomic profiling of mouse striatal cell model of Huntington's disease and control; probable implications to the disease biology.
    Choudhury KR; Das S; Bhattacharyya NP
    J Proteomics; 2016 Jan; 132():155-66. PubMed ID: 26581643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage.
    Shirendeb U; Reddy AP; Manczak M; Calkins MJ; Mao P; Tagle DA; Reddy PH
    Hum Mol Genet; 2011 Apr; 20(7):1438-55. PubMed ID: 21257639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative metabolism and Ca
    Hamilton J; Brustovetsky T; Brustovetsky N
    Neurochem Int; 2017 Oct; 109():24-33. PubMed ID: 28062223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial dysfunction in Huntington's disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice.
    Oliveira JM; Jekabsons MB; Chen S; Lin A; Rego AC; Gonçalves J; Ellerby LM; Nicholls DG
    J Neurochem; 2007 Apr; 101(1):241-9. PubMed ID: 17394466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease.
    Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS
    J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic changes in the brains of Huntington's disease mouse models reflect pathology and implicate mitochondrial changes.
    Deschepper M; Hoogendoorn B; Brooks S; Dunnett SB; Jones L
    Brain Res Bull; 2012 Jun; 88(2-3):210-22. PubMed ID: 21272615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington's disease.
    Wright DJ; Renoir T; Smith ZM; Frazier AE; Francis PS; Thorburn DR; McGee SL; Hannan AJ; Gray LJ
    Transl Psychiatry; 2015 Jan; 5(1):e492. PubMed ID: 25562842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothalamic expression of huntingtin causes distinct metabolic changes in Huntington's disease mice.
    Dickson E; Soylu-Kucharz R; Petersén Å; Björkqvist M
    Mol Metab; 2022 Mar; 57():101439. PubMed ID: 35007790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease.
    Van Raamsdonk JM; Murphy Z; Slow EJ; Leavitt BR; Hayden MR
    Hum Mol Genet; 2005 Dec; 14(24):3823-35. PubMed ID: 16278236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease.
    Yu ZX; Li SH; Evans J; Pillarisetti A; Li H; Li XJ
    J Neurosci; 2003 Mar; 23(6):2193-202. PubMed ID: 12657678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein changes in synaptosomes of Huntington's disease knock-in mice are dependent on age and brain region.
    Sapp E; Seeley C; Iuliano M; Weisman E; Vodicka P; DiFiglia M; Kegel-Gleason KB
    Neurobiol Dis; 2020 Jul; 141():104950. PubMed ID: 32439598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.
    Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P
    J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone Deacetylase Inhibitors Protect Against Pyruvate Dehydrogenase Dysfunction in Huntington's Disease.
    Naia L; Cunha-Oliveira T; Rodrigues J; Rosenstock TR; Oliveira A; Ribeiro M; Carmo C; Oliveira-Sousa SI; Duarte AI; Hayden MR; Rego AC
    J Neurosci; 2017 Mar; 37(10):2776-2794. PubMed ID: 28123081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.