These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30902802)

  • 1. Computational Prediction of the Site(s) of Metabolism and Binding Modes of Protein Kinase Inhibitors Metabolized by CYP3A4.
    Nair PC; McKinnon RA; Miners JO
    Drug Metab Dispos; 2019 Jun; 47(6):616-631. PubMed ID: 30902802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Based Site of Metabolism (SOM) Prediction of Ligand for CYP3A4 Enzyme: Comparison of Glide XP and Induced Fit Docking (IFD).
    Lokwani DK; Sarkate AP; Karnik KS; Nikalje APG; Seijas JA
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32244772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorafenib N-Oxide Is an Inhibitor of Human Hepatic CYP3A4.
    Ghassabian S; Gillani TB; Rawling T; Crettol S; Nair PC; Murray M
    AAPS J; 2019 Jan; 21(2):15. PubMed ID: 30627802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Investigation of Ligand Binding to the Peripheral Site in CYP3A4: Conformational Dynamics and Inhibitor Discovery.
    Du H; Li J; Cai Y; Zhang H; Liu G; Tang Y; Li W
    J Chem Inf Model; 2017 Mar; 57(3):616-626. PubMed ID: 28221037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dirlotapide as a model substrate to refine structure-based drug design strategies on CYP3A4-catalyzed metabolism.
    Sun H; Bessire AJ; Vaz A
    Bioorg Med Chem Lett; 2012 Jan; 22(1):371-6. PubMed ID: 22094027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: Solving the modes of the metabolism and inhibition.
    Yamazoe Y; Goto T; Tohkin M
    Drug Metab Pharmacokinet; 2019 Apr; 34(2):113-125. PubMed ID: 30639283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of enzyme-ligand interactions in CYP2D6 & 3A4 homology models and crystal structures using a novel computational approach.
    Kjellander B; Masimirembwa CM; Zamora I
    J Chem Inf Model; 2007; 47(3):1234-47. PubMed ID: 17381082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of sites of metabolism in a substrate molecule, instanced by carbamazepine oxidation by CYP3A4.
    Yuki H; Honma T; Hata M; Hoshino T
    Bioorg Med Chem; 2012 Jan; 20(2):775-83. PubMed ID: 22197672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Sites of Metabolism of CYP3A4 Substrates Utilizing Docking-Derived Geometric Features.
    Feng Y; Gong C; Zhu J; Liu G; Tang Y; Li W
    J Chem Inf Model; 2023 Jul; 63(13):4158-4169. PubMed ID: 37336765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway-dependent inhibition of paclitaxel hydroxylation by kinase inhibitors and assessment of drug-drug interaction potentials.
    Wang Y; Wang M; Qi H; Pan P; Hou T; Li J; He G; Zhang H
    Drug Metab Dispos; 2014 Apr; 42(4):782-95. PubMed ID: 24476576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of catalytic properties of cytochromes P450 3A4 and 3A5 by molecular docking simulation.
    Niwa T; Yasumura M; Murayama N; Yamazaki H
    Drug Metab Lett; 2014; 8(1):43-50. PubMed ID: 24484539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based site of metabolism prediction for cytochrome P450 2D6.
    Moors SL; Vos AM; Cummings MD; Van Vlijmen H; Ceulemans A
    J Med Chem; 2011 Sep; 54(17):6098-105. PubMed ID: 21797232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational dynamics of CYP3A4 demonstrate the important role of Arg212 coupled with the opening of ingress, egress and solvent channels to dehydrogenation of 4-hydroxy-tamoxifen.
    Shahrokh K; Cheatham TE; Yost GS
    Biochim Biophys Acta; 2012 Oct; 1820(10):1605-17. PubMed ID: 22677141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorafenib and sunitinib, two anticancer drugs, inhibit CYP3A4-mediated and activate CY3A5-mediated midazolam 1'-hydroxylation.
    Sugiyama M; Fujita K; Murayama N; Akiyama Y; Yamazaki H; Sasaki Y
    Drug Metab Dispos; 2011 May; 39(5):757-62. PubMed ID: 21266595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of a grid-based CYP3A4 Template system to understand the interacting mechanisms of large-size ligands; part 4 of CYP3A4 Template study.
    Goto T; Yamazoe Y; Tohkin M
    Drug Metab Pharmacokinet; 2020 Dec; 35(6):485-496. PubMed ID: 32967779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of binding modes of ligands to multiple conformations of CYP3A4.
    Teixeira VH; Ribeiro V; Martel PJ
    Biochim Biophys Acta; 2010 Oct; 1804(10):2036-45. PubMed ID: 20601222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of human CYP3A4 in the biotransformation of sorafenib to its major oxidized metabolites.
    Ghassabian S; Rawling T; Zhou F; Doddareddy MR; Tattam BN; Hibbs DE; Edwards RJ; Cui PH; Murray M
    Biochem Pharmacol; 2012 Jul; 84(2):215-23. PubMed ID: 22513143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of protein flexibility on the site of metabolism prediction for CYP2A6 substrates.
    Sheng Y; Chen Y; Wang L; Liu G; Li W; Tang Y
    J Mol Graph Model; 2014 Nov; 54():90-9. PubMed ID: 25459760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the likelihood of drug interactions with kinase inhibitors based on in vitro and computational studies.
    Wang ZX; Sun J; Howell CE; Zhou QY; He ZX; Yang T; Chew H; Duan W; Zhou ZW; Kanwar JR; Zhou SF
    Fundam Clin Pharmacol; 2014 Oct; 28(5):551-82. PubMed ID: 24612223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of CYP3A4 with caffeine: First insights into multiple substrate binding.
    Sevrioukova IF
    J Biol Chem; 2023 Sep; 299(9):105117. PubMed ID: 37524132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.