BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30902976)

  • 1. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris.
    Guzman MS; Rengasamy K; Binkley MM; Jones C; Ranaivoarisoa TO; Singh R; Fike DA; Meacham JM; Bose A
    Nat Commun; 2019 Mar; 10(1):1355. PubMed ID: 30902976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria.
    McKinlay JB; Harwood CS
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11669-75. PubMed ID: 20558750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron uptake by iron-oxidizing phototrophic bacteria.
    Bose A; Gardel EJ; Vidoudez C; Parra EA; Girguis PR
    Nat Commun; 2014 Feb; 5():3391. PubMed ID: 24569675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Interplay between Photosynthesis, CO
    Alsiyabi A; Immethun CM; Saha R
    Sci Rep; 2019 Sep; 9(1):12638. PubMed ID: 31477760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake.
    Gupta D; Sutherland MC; Rengasamy K; Meacham JM; Kranz RG; Bose A
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular electron uptake for CO
    Sun C; Yu Q; Zhao Z; Zhang Y
    Sci Total Environ; 2022 Nov; 849():157864. PubMed ID: 35934039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown Rhodopseudomonas palustris CGA009 through a Genome-Scale Metabolic and Expression Model.
    Chowdhury NB; Alsiyabi A; Saha R
    Microbiol Spectr; 2022 Aug; 10(4):e0146322. PubMed ID: 35730964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation.
    Gordon GC; McKinlay JB
    J Bacteriol; 2014 Mar; 196(6):1231-7. PubMed ID: 24415727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria.
    McKinlay JB; Harwood CS
    mBio; 2011; 2(2):. PubMed ID: 21427286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Perturbations of
    Satagopan S; North JA; Arbing MA; Varaljay VA; Haines SN; Wildenthal JA; Byerly KM; Shin A; Tabita FR
    Biochemistry; 2019 Sep; 58(37):3880-3892. PubMed ID: 31456394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin-Benson-Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustris.
    Laguna R; Tabita FR; Alber BE
    Arch Microbiol; 2011 Feb; 193(2):151-4. PubMed ID: 21104179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A short history of RubisCO: the rise and fall (?) of Nature's predominant CO
    Erb TJ; Zarzycki J
    Curr Opin Biotechnol; 2018 Feb; 49():100-107. PubMed ID: 28843191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast metabolic engineering for carbon dioxide fixation and its application.
    Rin Kim S; Kim SJ; Kim SK; Seo SO; Park S; Shin J; Kim JS; Park BR; Jin YS; Chang PS; Park YC
    Bioresour Technol; 2022 Feb; 346():126349. PubMed ID: 34800639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntrophic interspecies electron transfer drives carbon fixation and growth by
    Liu X; Huang L; Rensing C; Ye J; Nealson KH; Zhou S
    Sci Adv; 2021 Jul; 7(27):. PubMed ID: 34215588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source.
    Madigan MT; Gest H
    J Bacteriol; 1979 Jan; 137(1):524-30. PubMed ID: 216663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris.
    Rey FE; Oda Y; Harwood CS
    J Bacteriol; 2006 Sep; 188(17):6143-52. PubMed ID: 16923881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation.
    Bryce C; Franz-Wachtel M; Nalpas NC; Miot J; Benzerara K; Byrne JM; Kleindienst S; Macek B; Kappler A
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Energy and Electron Availability on
    Zheng Y; Harwood CS
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria.
    Byrne JM; Klueglein N; Pearce C; Rosso KM; Appel E; Kappler A
    Science; 2015 Mar; 347(6229):1473-6. PubMed ID: 25814583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway.
    Tichi MA; Tabita FR
    Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.