BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 30902976)

  • 21. Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium.
    Frolov EN; Kublanov IV; Toshchakov SV; Lunev EA; Pimenov NV; Bonch-Osmolovskaya EA; Lebedinsky AV; Chernyh NA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18638-18646. PubMed ID: 31451656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of a genetically engineered microorganism for CO2 fixation using a Rhodopseudomonas/Escherichia coli shuttle vector.
    Du C; Zhou J; Wang J; Yan B; Lu H; Hou H
    FEMS Microbiol Lett; 2003 Aug; 225(1):69-73. PubMed ID: 12900023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum.
    Falcone DL; Tabita FR
    J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The regulatory interplay between photorespiration and photosynthesis.
    Timm S; Florian A; Fernie AR; Bauwe H
    J Exp Bot; 2016 May; 67(10):2923-9. PubMed ID: 26969745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. His/Met heme ligation in the PioA outer membrane cytochrome enabling light-driven extracellular electron transfer by Rhodopseudomonas palustris TIE-1.
    Li DB; Edwards MJ; Blake AW; Newton-Payne SE; Piper SEH; Jenner LP; Sokol KP; Reisner E; Van Wonderen JH; Clarke TA; Butt JN
    Nanotechnology; 2020 Aug; 31(35):354002. PubMed ID: 32403091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications.
    Gupta D; Guzman MS; Bose A
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):863-876. PubMed ID: 32930890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering carbon fixation in E. coli: from heterologous RuBisCO expression to the Calvin-Benson-Bassham cycle.
    Antonovsky N; Gleizer S; Milo R
    Curr Opin Biotechnol; 2017 Oct; 47():83-91. PubMed ID: 28715702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources.
    Joshi GS; Romagnoli S; Verberkmoes NC; Hettich RL; Pelletier D; Tabita FR
    J Bacteriol; 2009 Jul; 191(13):4243-50. PubMed ID: 19376869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction.
    Ruuska SA; Badger MR; Andrews TJ; von Caemmerer S
    J Exp Bot; 2000 Feb; 51 Spec No():357-68. PubMed ID: 10938843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The cbbL gene is required for thiosulfate-dependent autotrophic growth of Bradyrhizobium japonicum.
    Masuda S; Eda S; Sugawara C; Mitsui H; Minamisawa K
    Microbes Environ; 2010; 25(3):220-3. PubMed ID: 21576876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought.
    Cornic G; Fresneau C
    Ann Bot; 2002 Jun; 89 Spec No(7):887-94. PubMed ID: 12102514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. n-Butanol production by Rhodopseudomonas palustris TIE-1.
    Bai W; Ranaivoarisoa TO; Singh R; Rengasamy K; Bose A
    Commun Biol; 2021 Nov; 4(1):1257. PubMed ID: 34732832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive pentose cycle and formate assimilation in Rhodopseudomonas palustris.
    Stokes JE; Hoare DS
    J Bacteriol; 1969 Nov; 100(2):890-4. PubMed ID: 5354954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation.
    Barber RD; Donohue TJ
    Biochemistry; 1998 Jan; 37(2):530-7. PubMed ID: 9425073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1.
    Rengasamy K; Ranaivoarisoa T; Singh R; Bose A
    Bioelectrochemistry; 2018 Aug; 122():164-173. PubMed ID: 29655035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genes essential for phototrophic growth by a purple alphaproteobacterium.
    Yang J; Yin L; Lessner FH; Nakayasu ES; Payne SH; Fixen KR; Gallagher L; Harwood CS
    Environ Microbiol; 2017 Sep; 19(9):3567-3578. PubMed ID: 28677146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reductive pentose phosphate-independent CO2 fixation in Rhodobacter sphaeroides and evidence that ribulose bisphosphate carboxylase/oxygenase activity serves to maintain the redox balance of the cell.
    Wang X; Falcone DL; Tabita FR
    J Bacteriol; 1993 Jun; 175(11):3372-9. PubMed ID: 8501041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation.
    Ren G; Ye J; Hu Q; Zhang D; Yuan Y; Zhou S
    Nat Commun; 2024 Jun; 15(1):4992. PubMed ID: 38862519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph.
    Fixen KR; Oda Y; Harwood CS
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.