These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 30902985)

  • 1. Artificial photosynthetic cell producing energy for protein synthesis.
    Berhanu S; Ueda T; Kuruma Y
    Nat Commun; 2019 Mar; 10(1):1325. PubMed ID: 30902985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system.
    Lee KY; Park SJ; Lee KA; Kim SH; Kim H; Meroz Y; Mahadevan L; Jung KH; Ahn TK; Parker KK; Shin K
    Nat Biotechnol; 2018 Jul; 36(6):530-535. PubMed ID: 29806849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells.
    Altamura E; Albanese P; Marotta R; Milano F; Fiore M; Trotta M; Stano P; Mavelli F
    Proc Natl Acad Sci U S A; 2021 Feb; 118(7):. PubMed ID: 33526592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-Powered Artificial Organelles for ATP Generation and Life-Sustainment.
    Zheng DW; Xu L; Li CX; Dong X; Pan P; Zhang QL; Li B; Zeng X; Zhang XZ
    Adv Mater; 2018 Dec; 30(52):e1805038. PubMed ID: 30378187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thylakoid Containing Artificial Cells for the Inhibition Investigation of Light-Driven Electron Transfer during Photosynthesis.
    Zong W; Zhang X; Li C; Han X
    ACS Synth Biol; 2018 Mar; 7(3):945-951. PubMed ID: 29439569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane.
    Steinberg-Yfrach G; Rigaud JL; Durantini EN; Moore AL; Gust D; Moore TA
    Nature; 1998 Apr; 392(6675):479-82. PubMed ID: 9548252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Powered Reactivation of Flagella and Contraction of Microtubule Networks: Toward Building an Artificial Cell.
    Ahmad R; Kleineberg C; Nasirimarekani V; Su YJ; Goli Pozveh S; Bae A; Sundmacher K; Bodenschatz E; Guido I; Vidaković-Koch T; Gholami A
    ACS Synth Biol; 2021 Jun; 10(6):1490-1504. PubMed ID: 33761235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.
    Lu H; Yuan W; Zhou J; Chong PL
    Appl Biochem Biotechnol; 2015 Sep; 177(1):105-17. PubMed ID: 26170084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways.
    Elani Y; Law RV; Ces O
    Nat Commun; 2014 Oct; 5():5305. PubMed ID: 25351716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell Fuelling and Metabolic Energy Conservation in Synthetic Cells.
    Sikkema HR; Gaastra BF; Pols T; Poolman B
    Chembiochem; 2019 Oct; 20(20):2581-2592. PubMed ID: 31381223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Organelles for Energy Regeneration.
    Otrin L; Kleineberg C; Caire da Silva L; Landfester K; Ivanov I; Wang M; Bednarz C; Sundmacher K; Vidaković-Koch T
    Adv Biosyst; 2019 Jun; 3(6):e1800323. PubMed ID: 32648709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing vesicle-based artificial cells with embedded living cells as organelle-like modules.
    Elani Y; Trantidou T; Wylie D; Dekker L; Polizzi K; Law RV; Ces O
    Sci Rep; 2018 Mar; 8(1):4564. PubMed ID: 29540757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking photosynthetic solar energy transduction.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2001 Jan; 34(1):40-8. PubMed ID: 11170355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 1. Factors defining the optimal reconstitution of ATP synthases with bacteriorhodopsin.
    Pitard B; Richard P; Duñach M; Girault G; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):769-78. PubMed ID: 8654428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottom-Up Assembly of Functional Intracellular Synthetic Organelles by Droplet-Based Microfluidics.
    Staufer O; Schröter M; Platzman I; Spatz JP
    Small; 2020 Jul; 16(27):e1906424. PubMed ID: 32078238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of ATP synthase from beef heart mitochondria (F0F1) and co-reconstitution with monomeric bacteriorhodopsin into liposomes capable of light-driven ATP synthesis.
    Deisinger B; Nawroth T; Zwicker K; Matuschka S; John G; Zimmer G; Freisleben HJ
    Eur J Biochem; 1993 Dec; 218(2):377-83. PubMed ID: 8269926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells.
    Altamura E; Milano F; Tangorra RR; Trotta M; Omar OH; Stano P; Mavelli F
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3837-3842. PubMed ID: 28320948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.