These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
825 related articles for article (PubMed ID: 30903317)
1. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression. Nakamura S; Tanaka C; Yuasa H; Sakamoto T AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317 [TBL] [Abstract][Full Text] [Related]
2. Orally Disintegrating Tablet Manufacture via Direct Powder Compression Using Cellulose Nanofiber as a Functional Additive. Nakamura S; Fukai T; Sakamoto T AAPS PharmSciTech; 2021 Dec; 23(1):37. PubMed ID: 34950985 [TBL] [Abstract][Full Text] [Related]
3. Setting Ideal Lubricant Mixing Time for Manufacturing Tablets by Evaluating Powder Flowability. Nakamura S; Yamaguchi S; Hiraide R; Iga K; Sakamoto T; Yuasa H AAPS PharmSciTech; 2017 Oct; 18(7):2832-2840. PubMed ID: 28357684 [TBL] [Abstract][Full Text] [Related]
4. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets. Lin SY; Lin KH; Li MJ J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050 [TBL] [Abstract][Full Text] [Related]
5. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes. Kushner J; Langdon BA; Hicks I; Song D; Li F; Kathiria L; Kane A; Ranade G; Agarwal K J Pharm Sci; 2014 Feb; 103(2):527-38. PubMed ID: 24375069 [TBL] [Abstract][Full Text] [Related]
6. Prediction of tablet hardness based on near infrared spectra of raw mixed powders by chemometrics. Otsuka M; Yamane I J Pharm Sci; 2006 Jul; 95(7):1425-33. PubMed ID: 16721793 [TBL] [Abstract][Full Text] [Related]
7. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile. Hosseini A; Körber M; Bodmeier R Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153 [TBL] [Abstract][Full Text] [Related]
8. Continuous direct tablet compression: effects of impeller rotation rate, total feed rate and drug content on the tablet properties and drug release. Järvinen MA; Paaso J; Paavola M; Leiviskä K; Juuti M; Muzzio F; Järvinen K Drug Dev Ind Pharm; 2013 Nov; 39(11):1802-8. PubMed ID: 23163644 [TBL] [Abstract][Full Text] [Related]
9. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration. Yang B; Wei C; Yang Y; Wang Q; Li S Drug Dev Ind Pharm; 2018 Sep; 44(9):1417-1425. PubMed ID: 29557692 [TBL] [Abstract][Full Text] [Related]
10. The role of intra- and extragranular microcrystalline cellulose in tablet dissolution. Li JZ; Rekhi GS; Augsburger LL; Shangraw RF Pharm Dev Technol; 1996 Dec; 1(4):343-55. PubMed ID: 9552318 [TBL] [Abstract][Full Text] [Related]
11. Microparticle surface layering through dry coating: impact of moisture content and process parameters on the properties of orally disintegrating tablets. Alyami H; Koner J; Dahmash EZ; Bowen J; Terry D; Mohammed AR J Pharm Pharmacol; 2017 Jul; 69(7):807-822. PubMed ID: 27696423 [TBL] [Abstract][Full Text] [Related]
12. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending. Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448 [TBL] [Abstract][Full Text] [Related]
13. Application of Co-processed Excipient as a Novel Method to Compound Orally Disintegrating Tablets. Liew KB; Hii SH; Chew YL; Ming LC; Uddin AH; Sarker ZI Int J Pharm Compd; 2022; 26(3):255-263. PubMed ID: 35657749 [TBL] [Abstract][Full Text] [Related]
14. Effect of spray-dried mannitol on the performance of microcrystalline cellulose-based wet granulated tablet formulation. Badawy SI; Shah KR; Surapaneni MS; Szemraj MM; Hussain M Pharm Dev Technol; 2010; 15(4):339-45. PubMed ID: 20088677 [TBL] [Abstract][Full Text] [Related]
15. Tablet mechanics depend on nano and micro scale adhesion, lubrication and structure. Badal Tejedor M; Nordgren N; Schuleit M; Rutland MW; Millqvist-Fureby A Int J Pharm; 2015; 486(1-2):315-23. PubMed ID: 25841569 [TBL] [Abstract][Full Text] [Related]
16. Application of crustacean chitin as a co-diluent in direct compression of tablets. Mir VG; Heinämäki J; Antikainen O; Sandler N; Revoredo OB; Colarte AI; Nieto OM; Yliruusi J AAPS PharmSciTech; 2010 Mar; 11(1):409-15. PubMed ID: 20238188 [TBL] [Abstract][Full Text] [Related]
17. A microcrystalline cellulose based drug-composite formulation strategy for developing low dose drug tablets. Sun WJ; Sun CC Int J Pharm; 2020 Jul; 585():119517. PubMed ID: 32526333 [TBL] [Abstract][Full Text] [Related]
18. Prediction of tablet properties based on near infrared spectra of raw mixed powders by chemometrics: Scale-up factor of blending and tableting processes. Otsuka M; Yamane I J Pharm Sci; 2009 Nov; 98(11):4296-305. PubMed ID: 19530073 [TBL] [Abstract][Full Text] [Related]
19. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties. Alamdari NE; Aksoy B; Babu RJ; Jiang Z Int J Biol Macromol; 2024 Jun; 270(Pt 1):132298. PubMed ID: 38750863 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of tableting and tablet properties of Kollidon SR: the influence of moisture and mixtures with theophylline monohydrate. Hauschild K; Picker-Freyer KM Pharm Dev Technol; 2006 Feb; 11(1):125-40. PubMed ID: 16544916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]