These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
463 related articles for article (PubMed ID: 30903435)
1. Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Abdul Rahim MBH; Chilloux J; Martinez-Gili L; Neves AL; Myridakis A; Gooderham N; Dumas ME Acta Diabetol; 2019 May; 56(5):493-500. PubMed ID: 30903435 [TBL] [Abstract][Full Text] [Related]
2. The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases. Neves AL; Chilloux J; Sarafian MH; Rahim MB; Boulangé CL; Dumas ME Curr Opin Pharmacol; 2015 Dec; 25():36-44. PubMed ID: 26531326 [TBL] [Abstract][Full Text] [Related]
3. Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes. Zhu T; Goodarzi MO Curr Nutr Rep; 2020 Jun; 9(2):83-93. PubMed ID: 32157661 [TBL] [Abstract][Full Text] [Related]
4. Understanding connections and roles of gut microbiome in cardiovascular diseases. Rajendiran E; Ramadass B; Ramprasath V Can J Microbiol; 2021 Feb; 67(2):101-111. PubMed ID: 33079568 [TBL] [Abstract][Full Text] [Related]
5. Dietary Patterns Affect the Gut Microbiome-The Link to Risk of Cardiometabolic Diseases. Tindall AM; Petersen KS; Kris-Etherton PM J Nutr; 2018 Sep; 148(9):1402-1407. PubMed ID: 30184227 [TBL] [Abstract][Full Text] [Related]
6. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Agus A; Clément K; Sokol H Gut; 2021 Jun; 70(6):1174-1182. PubMed ID: 33272977 [TBL] [Abstract][Full Text] [Related]
7. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Masse KE; Lu VB Front Endocrinol (Lausanne); 2023; 14():1169624. PubMed ID: 37560311 [TBL] [Abstract][Full Text] [Related]
8. Effects of enzymatically modified chestnut starch on the gut microbiome, microbial metabolome, and transcriptome of diet-induced obese mice. Lee ES; Song EJ; Nam YD; Nam TG; Kim HJ; Lee BH; Seo MJ; Seo DH Int J Biol Macromol; 2020 Feb; 145():235-243. PubMed ID: 31870873 [TBL] [Abstract][Full Text] [Related]
9. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Zhang LS; Davies SS Genome Med; 2016 Apr; 8(1):46. PubMed ID: 27102537 [TBL] [Abstract][Full Text] [Related]
10. Gut Microbiota and Cardiovascular Disease. Witkowski M; Weeks TL; Hazen SL Circ Res; 2020 Jul; 127(4):553-570. PubMed ID: 32762536 [TBL] [Abstract][Full Text] [Related]
11. The Gut Microbial Endocrine Organ in Type 2 Diabetes. Massey W; Brown JM Endocrinology; 2021 Feb; 162(2):. PubMed ID: 33373432 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Rauf A; Khalil AA; Rahman UU; Khalid A; Naz S; Shariati MA; Rebezov M; Urtecho EZ; de Albuquerque RDDG; Anwar S; Alamri A; Saini RK; Rengasamy KRR Crit Rev Food Sci Nutr; 2022; 62(22):6034-6054. PubMed ID: 33703960 [TBL] [Abstract][Full Text] [Related]
13. From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course? Barrea L; Muscogiuri G; Annunziata G; Laudisio D; Pugliese G; Salzano C; Colao A; Savastano S Hormones (Athens); 2019 Sep; 18(3):245-250. PubMed ID: 30840230 [TBL] [Abstract][Full Text] [Related]
14. Soluble Dietary Fiber Reduces Trimethylamine Metabolism via Gut Microbiota and Co-Regulates Host AMPK Pathways. Li Q; Wu T; Liu R; Zhang M; Wang R Mol Nutr Food Res; 2017 Dec; 61(12):. PubMed ID: 28884952 [TBL] [Abstract][Full Text] [Related]
15. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Makki K; Deehan EC; Walter J; Bäckhed F Cell Host Microbe; 2018 Jun; 23(6):705-715. PubMed ID: 29902436 [TBL] [Abstract][Full Text] [Related]
16. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Markowiak-Kopeć P; Śliżewska K Nutrients; 2020 Apr; 12(4):. PubMed ID: 32316181 [TBL] [Abstract][Full Text] [Related]
17. The role of the gut microbiota in NAFLD. Leung C; Rivera L; Furness JB; Angus PW Nat Rev Gastroenterol Hepatol; 2016 Jul; 13(7):412-25. PubMed ID: 27273168 [TBL] [Abstract][Full Text] [Related]
18. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases. Chen X; Zhang H; Ren S; Ding Y; Remex NS; Bhuiyan MS; Qu J; Tang X Chin Med J (Engl); 2023 Oct; 136(19):2269-2284. PubMed ID: 37442759 [TBL] [Abstract][Full Text] [Related]
19. Dietary Fiber Gap and Host Gut Microbiota. Han M; Wang C; Liu P; Li D; Li Y; Ma X Protein Pept Lett; 2017 May; 24(5):388-396. PubMed ID: 28219317 [TBL] [Abstract][Full Text] [Related]
20. Gut Microbial Metabolites and Blood Pressure Regulation: Focus on SCFAs and TMAO. Poll BG; Cheema MU; Pluznick JL Physiology (Bethesda); 2020 Jul; 35(4):275-284. PubMed ID: 32490748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]