BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30903479)

  • 21. The specificity and product of quenching singlet oxygen by 2,2,6,6-tetramethylpiperidine.
    Zang LY; van Kuijk FJ; Misra BR; Misra HP
    Biochem Mol Biol Int; 1995 Oct; 37(2):283-93. PubMed ID: 8673011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous production of superoxide radical and singlet oxygen by sulphonated chloroaluminum phthalocyanine incorporated in human low-density lipoproteins: implications for photodynamic therapy.
    Martins J; Almeida L; Laranjinha J
    Photochem Photobiol; 2004; 80(2):267-73. PubMed ID: 15362945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial distribution of protein damage by singlet oxygen in keratinocytes.
    He YY; Council SE; Feng L; Bonini MG; Chignell CF
    Photochem Photobiol; 2008; 84(1):69-74. PubMed ID: 18173704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electric magnetic resonance and spectrophotometry evidence on the photodynamic activity of a new perylenequinonoid pigment.
    He YY; An JY; Jiang LJ
    J Photochem Photobiol B; 1999 Jun; 50(2-3):166-73. PubMed ID: 10577050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EPR studies of trapped singlet oxygen (1O2) generated during photoirradiation of hypocrellin A.
    Zang LY; Zhang ZY; Misra HP
    Photochem Photobiol; 1990 Oct; 52(4):677-83. PubMed ID: 1965229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photosensitized production of singlet oxygen.
    Kochevar IE; Redmond RW
    Methods Enzymol; 2000; 319():20-8. PubMed ID: 10907495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of hydroxyl radicals and singlet oxygen in the formation of primary radicals in unsaturated lipids: a solid state electron paramagnetic resonance study.
    Geoffroy M; Lambelet P; Richert P
    J Agric Food Chem; 2000 Apr; 48(4):974-8. PubMed ID: 10775336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Search of a Phosphorus Dendrimer-Based Carrier of Rose Bengal: Tyramine Linker Limits Fluorescent and Phototoxic Properties of a Photosensitizer.
    Sztandera K; Marcinkowska M; Gorzkiewicz M; Janaszewska A; Laurent R; Zabłocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32585884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Rose Bengal-Photosensitized Protein Crosslinking in the Cornea.
    Wertheimer CM; Elhardt C; Kaminsky SM; Pham L; Pei Q; Mendes B; Afshar S; Kochevar IE
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):1845-1852. PubMed ID: 31042790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Curcumin (diferuloylmethane), a singlet oxygen ((1)O(2)) quencher.
    Das KC; Das CK
    Biochem Biophys Res Commun; 2002 Jul; 295(1):62-6. PubMed ID: 12083767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane ionic current photomodification by rose bengal and menadione: role of singlet oxygen.
    Arriaga E; Frolov A; Tarr M; Valenzeno DP
    Photochem Photobiol; 1994 Jun; 59(6):637-42. PubMed ID: 8066123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Au nanobipyramids@mSiO
    Mendoza C; Désert A; Chateau D; Monnereau C; Khrouz L; Lerouge F; Andraud C; Monbaliu JM; Parola S; Heinrichs B
    Nanoscale Adv; 2020 Nov; 2(11):5280-5287. PubMed ID: 36132037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanocaging Rose Bengal to Inhibit Aggregation and Enhance Photo-induced Oxygen Consumption
    Alvarez-Lopez C; Cavazos-Elizondo D; Heyne B; Kochevar IE; Aguirre-Soto A
    Photochem Photobiol; 2023 Mar; 99(2):580-592. PubMed ID: 36529885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of the free radicals O2.- and .OH by irradiation of the photosensitizer zinc(II) phthalocyanine.
    Hadjur C; Wagnières G; Ihringer F; Monnier P; van den Bergh H
    J Photochem Photobiol B; 1997 Apr; 38(2-3):196-202. PubMed ID: 9203381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EPR studies on the kinetics of quenching singlet oxygen.
    Zang LY; Misra BR; van Kuijk FJ; Misra HP
    Biochem Mol Biol Int; 1995 Dec; 37(6):1187-95. PubMed ID: 8747549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel water-soluble photosensitizers from chitosan.
    Moczek Ł; Nowakowska M
    Biomacromolecules; 2007 Feb; 8(2):433-8. PubMed ID: 17291066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker.
    Lee J; Park J; Singha K; Kim WJ
    Chem Commun (Camb); 2013 Feb; 49(15):1545-7. PubMed ID: 23325385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts.
    Gutiérrez J; González-Pérez S; García-García F; Daly CT; Lorenzo O; Revuelta JL; McCabe PF; Arellano JB
    J Exp Bot; 2014 Jul; 65(12):3081-95. PubMed ID: 24723397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibacterial application of covalently immobilized photosensitizers on a surface.
    Kim HS; Cha EJ; Kang HJ; Park JH; Lee J; Park HD
    Environ Res; 2019 May; 172():34-42. PubMed ID: 30769187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite.
    Shitomi K; Miyaji H; Miyata S; Sugaya T; Ushijima N; Akasaka T; Kawasaki H
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101647. PubMed ID: 31904554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.