BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30903655)

  • 1. Concentration of FAD as a marker for cervical precancer detection.
    Meena BL; Agarwal A; Pantola C; Pandey K; Pradhan A
    J Biomed Opt; 2019 Mar; 24(3):1-7. PubMed ID: 30903655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device.
    Meena BL; Singh P; Sah AN; Pandey K; Agarwal A; Pantola C; Pradhan A
    J Biomed Opt; 2018 Jan; 23(1):1-7. PubMed ID: 29341542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis.
    Devi S; Panigrahi PK; Pradhan A
    J Biomed Opt; 2014 Dec; 19(12):127003. PubMed ID: 25504494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free imaging and spectroscopy for early detection of cervical cancer.
    Jing Y; Wang Y; Wang X; Song C; Ma J; Xie Y; Fei Y; Zhang Q; Mi L
    J Biophotonics; 2018 May; 11(5):e201700245. PubMed ID: 29205885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-vivo Testing of Oral Mucosal Lesions with an In-house Developed Portable Imaging Device and Comparison with Spectroscopy Results.
    Sah AN; Kumar P; Pradhan A
    J Fluoresc; 2023 Jul; 33(4):1375-1383. PubMed ID: 36701084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, fabrication and testing of 3D printed smartphone-based device for collection of intrinsic fluorescence from human cervix.
    Shukla S; Sah AN; Hatiboruah D; Ahirwar S; Nath P; Pradhan A
    Sci Rep; 2022 Jul; 12(1):11192. PubMed ID: 35778460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths.
    Ramanujam N; Mitchell MF; Mahadevan-Jansen A; Thomsen SL; Staerkel G; Malpica A; Wright T; Atkinson N; Richards-Kortum R
    Photochem Photobiol; 1996 Oct; 64(4):720-35. PubMed ID: 8863480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo detection of oral precancer using a fluorescence-based, in-house-fabricated device: a Mahalanobis distance-based classification.
    Kumar P; Kanaujia SK; Singh A; Pradhan A
    Lasers Med Sci; 2019 Aug; 34(6):1243-1251. PubMed ID: 30659473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of anisotropy of collagen structures through spatial frequencies of Mueller matrix images for cervical pre-cancer detection.
    Zaffar M; Pradhan A
    Appl Opt; 2020 Feb; 59(4):1237-1248. PubMed ID: 32225267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia.
    Chang SK; Marin N; Follen M; Richards-Kortum R
    J Biomed Opt; 2006; 11(2):024008. PubMed ID: 16674198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine.
    Atif M; AlSalhi MS; Devanesan S; Masilamani V; Farhat K; Rabah D
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():40-44. PubMed ID: 29800712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence spectra of blood and urine for cervical cancer detection.
    Masilamani V; Alsalhi MS; Vijmasi T; Govindarajan K; Rathan Rai R; Atif M; Prasad S; Aldwayyan AS
    J Biomed Opt; 2012 Sep; 17(9):98001-1. PubMed ID: 23085927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of fluorescence spectra of normal and dysplastic cervical tissues for optimizing excitation/receiving arrangements.
    Chu SC; Chiang HK
    Appl Spectrosc; 2010 Jul; 64(7):708-13. PubMed ID: 20615282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of inaccessible head and neck lesions using human saliva and fluorescence spectroscopy.
    Kumar P
    Lasers Med Sci; 2022 Apr; 37(3):1821-1827. PubMed ID: 34637056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-based fluorescence spectroscopic device for cervical precancer diagnosis: a random forest classification of in vitro data.
    Shukla S; Vishwakarma C; Sah AN; Ahirwar S; Pandey K; Pradhan A
    Appl Opt; 2023 Sep; 62(25):6826-6834. PubMed ID: 37706817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-induced fluorescence spectroscopy to differentiate benign and malignant uterine cervical lesions.
    Chen CT; Huang CC; Chen RJ; Lin YH; Chiang HH; Wang CY; Lee YS; Chow SN
    J Formos Med Assoc; 1997 Apr; 96(4):247-52. PubMed ID: 9136510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free, High-Resolution Optical Metabolic Imaging of Human Cervical Precancers Reveals Potential for Intraepithelial Neoplasia Diagnosis.
    Pouli D; Thieu HT; Genega EM; Baecher-Lind L; House M; Bond B; Roncari DM; Evans ML; Rius-Diaz F; Munger K; Georgakoudi I
    Cell Rep Med; 2020 May; 1(2):. PubMed ID: 32577625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Usefulness of real time elastography strain ratio in the assessment of cervical intraepithelial neoplasia and cervical cancer using a reference material.
    Dudea-Simon M; Dudea SM; Burde A; Ciortea R; Malutan A; Mihu D
    Med Ultrason; 2020 May; 22(2):145-151. PubMed ID: 32399523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminating different grades of cervical intraepithelial neoplasia based on label-free phasor fluorescence lifetime imaging microscopy.
    Wang X; Wang Y; Zhang Z; Huang M; Fei Y; Ma J; Mi L
    Biomed Opt Express; 2020 Apr; 11(4):1977-1990. PubMed ID: 32341861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.