BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30903655)

  • 21. Cervical cancer detection by time-resolved spectra of blood components.
    Kalaivani R; Masilamani V; AlSalhi MS; Devanesan S; Ramamurthy P; Palled SR; Ganesh KM
    J Biomed Opt; 2014 May; 19(5):057011. PubMed ID: 24853147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds.
    Mokrý M; Gál P; Vidinský B; Kusnír J; Dubayová K; Mozes S; Sabo J
    Photochem Photobiol; 2006; 82(3):793-7. PubMed ID: 16435883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
    Drezek R; Sokolov K; Utzinger U; Boiko I; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2001 Oct; 6(4):385-96. PubMed ID: 11728196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A technique for correction of attenuations in synchronous fluorescence spectroscopy.
    Devi S; Ghosh N; Pradhan A
    J Photochem Photobiol B; 2015 Oct; 151():1-9. PubMed ID: 26134713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy.
    Pavlova I; Sokolov K; Drezek R; Malpica A; Follen M; Richards-Kortum R
    Photochem Photobiol; 2003 May; 77(5):550-5. PubMed ID: 12812299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fluorescence perspective on the differential interaction of riboflavin and flavin adenine dinucleotide with cucurbit[7]uril.
    Dutta Choudhury S; Mohanty J; Bhasikuttan AC; Pal H
    J Phys Chem B; 2010 Aug; 114(33):10717-27. PubMed ID: 20684509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors.
    Jóskowiak A; Stasio N; Chu V; Prazeres DM; Conde JP
    Biosens Bioelectron; 2012; 36(1):242-9. PubMed ID: 22565094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decomposition of the fluorescence spectra of two FAD molecules in electron-transferring flavoprotein from Megasphaera elsdenii.
    Sato K; Nishina Y; Shiga K
    J Biochem; 2013 Jul; 154(1):61-6. PubMed ID: 23606284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical diagnosis of cervical cancer by fluorescence spectroscopy technique.
    Chidananda SM; Satyamoorthy K; Rai L; Manjunath AP; Kartha VB
    Int J Cancer; 2006 Jul; 119(1):139-45. PubMed ID: 16450394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneously quantifying intracellular FAD and FMN using a novel strategy of intrinsic fluorescence four-way calibration.
    Kang C; Wu HL; Xu ML; Yan XF; Liu YJ; Yu RQ
    Talanta; 2019 May; 197():105-112. PubMed ID: 30771910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling.
    Shao X; Zheng W; Huang Z
    J Biomed Opt; 2011 Jun; 16(6):067005. PubMed ID: 21721826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the autofluorescence of polymorphonuclear leukocytes, mononuclear leukocytes and cervical epithelial cancer cells for improved spectroscopic discrimination of inflammation from dysplasia.
    Heintzelman DL; Lotan R; Richards-Kortum RR
    Photochem Photobiol; 2000 Mar; 71(3):327-32. PubMed ID: 10732451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques.
    Duraipandian S; Zheng W; Ng J; Low JJ; Ilancheran A; Huang Z
    Analyst; 2011 Oct; 136(20):4328-36. PubMed ID: 21869948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer.
    Redden Weber C; Schwarz RA; Atkinson EN; Cox DD; Macaulay C; Follen M; Richards-Kortum R
    J Biomed Opt; 2008; 13(6):064016. PubMed ID: 19123662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.
    Duraipandian S; Zheng W; Ng J; Low JJ; Ilancheran A; Huang Z
    Anal Chem; 2012 Jul; 84(14):5913-9. PubMed ID: 22724621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of early cervical cancer diagnosis with epithelial layer analysis of fluorescence lifetime images.
    Gu J; Fu CY; Ng BK; Liu LB; Lim-Tan SK; Lee CG
    PLoS One; 2015; 10(5):e0125706. PubMed ID: 25966026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence spectroscopy incorporated in an Optical Biopsy System for the detection of early neoplasia in Barrett's esophagus.
    Boerwinkel DF; Holz JA; Hawkins DM; Curvers WL; Aalders MC; Weusten BL; Visser M; Meijer SL; Bergman JJ
    Dis Esophagus; 2015; 28(4):345-51. PubMed ID: 24602242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors.
    Zheng W; Lau W; Cheng C; Soo KC; Olivo M
    Int J Cancer; 2003 Apr; 104(4):477-81. PubMed ID: 12584746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarization gating technique extracts depth resolved fluorescence redox ratio in oral cancer diagnostics.
    Gnanatheepam E; Kanniyappan U; Dornadula K; Prakasarao A; Singaravelu G
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101757. PubMed ID: 32335189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.