These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30903686)
1. SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties. Taherzadeh G; Dehzangi A; Golchin M; Zhou Y; Campbell MP Bioinformatics; 2019 Oct; 35(20):4140-4146. PubMed ID: 30903686 [TBL] [Abstract][Full Text] [Related]
2. Computational Prediction of N- and O-Linked Glycosylation Sites for Human and Mouse Proteins. Taherzadeh G; Campbell M; Zhou Y Methods Mol Biol; 2022; 2499():177-186. PubMed ID: 35696081 [TBL] [Abstract][Full Text] [Related]
3. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279 [TBL] [Abstract][Full Text] [Related]
4. Predicting lysine-malonylation sites of proteins using sequence and predicted structural features. Taherzadeh G; Yang Y; Xu H; Xue Y; Liew AW; Zhou Y J Comput Chem; 2018 Aug; 39(22):1757-1763. PubMed ID: 29761520 [TBL] [Abstract][Full Text] [Related]
5. Structure-based prediction of protein- peptide binding regions using Random Forest. Taherzadeh G; Zhou Y; Liew AW; Yang Y Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926 [TBL] [Abstract][Full Text] [Related]
6. EMNGly: predicting N-linked glycosylation sites using the language models for feature extraction. Hou X; Wang Y; Bu D; Wang Y; Sun S Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37930896 [TBL] [Abstract][Full Text] [Related]
7. Sequence-based prediction of protein-peptide binding sites using support vector machine. Taherzadeh G; Yang Y; Zhang T; Liew AW; Zhou Y J Comput Chem; 2016 May; 37(13):1223-9. PubMed ID: 26833816 [TBL] [Abstract][Full Text] [Related]
8. Predicting O-glycosylation sites in mammalian proteins by using SVMs. Li S; Liu B; Zeng R; Cai Y; Li Y Comput Biol Chem; 2006 Jun; 30(3):203-8. PubMed ID: 16731044 [TBL] [Abstract][Full Text] [Related]
9. Incorporating a transfer learning technique with amino acid embeddings to efficiently predict N-linked glycosylation sites in ion channels. Nguyen TT; Le NQ; Tran TA; Pham DM; Ou YY Comput Biol Med; 2021 Mar; 130():104212. PubMed ID: 33454535 [TBL] [Abstract][Full Text] [Related]
10. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. Caragea C; Sinapov J; Silvescu A; Dobbs D; Honavar V BMC Bioinformatics; 2007 Nov; 8():438. PubMed ID: 17996106 [TBL] [Abstract][Full Text] [Related]
11. HOTGpred: Enhancing human O-linked threonine glycosylation prediction using integrated pretrained protein language model-based features and multi-stage feature selection approach. Pham NT; Zhang Y; Rakkiyappan R; Manavalan B Comput Biol Med; 2024 Sep; 179():108859. PubMed ID: 39029431 [TBL] [Abstract][Full Text] [Related]
12. GlycoPP: a webserver for prediction of N- and O-glycosites in prokaryotic protein sequences. Chauhan JS; Bhat AH; Raghava GP; Rao A PLoS One; 2012; 7(7):e40155. PubMed ID: 22808107 [TBL] [Abstract][Full Text] [Related]
13. Prediction of N-linked glycosylation sites using position relative features and statistical moments. Akmal MA; Rasool N; Khan YD PLoS One; 2017; 12(8):e0181966. PubMed ID: 28797096 [TBL] [Abstract][Full Text] [Related]
14. GlycoMine Li F; Li C; Revote J; Zhang Y; Webb GI; Li J; Song J; Lithgow T Sci Rep; 2016 Oct; 6():34595. PubMed ID: 27708373 [TBL] [Abstract][Full Text] [Related]
15. Gly-PseAAC: Identifying protein lysine glycation through sequences. Xu Y; Li L; Ding J; Wu LY; Mai G; Zhou F Gene; 2017 Feb; 602():1-7. PubMed ID: 27845204 [TBL] [Abstract][Full Text] [Related]
16. Sequence-Based Prediction of Protein-Carbohydrate Binding Sites Using Support Vector Machines. Taherzadeh G; Zhou Y; Liew AW; Yang Y J Chem Inf Model; 2016 Oct; 56(10):2115-2122. PubMed ID: 27623166 [TBL] [Abstract][Full Text] [Related]
17. Positive-unlabelled learning of glycosylation sites in the human proteome. Li F; Zhang Y; Purcell AW; Webb GI; Chou KC; Lithgow T; Li C; Song J BMC Bioinformatics; 2019 Mar; 20(1):112. PubMed ID: 30841845 [TBL] [Abstract][Full Text] [Related]
18. In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. Chauhan JS; Rao A; Raghava GP PLoS One; 2013; 8(6):e67008. PubMed ID: 23840574 [TBL] [Abstract][Full Text] [Related]
19. PredGly: predicting lysine glycation sites for Homo sapiens based on XGboost feature optimization. Yu J; Shi S; Zhang F; Chen G; Cao M Bioinformatics; 2019 Aug; 35(16):2749-2756. PubMed ID: 30590442 [TBL] [Abstract][Full Text] [Related]
20. O-glycosylation site prediction for Zhu Y; Yin S; Zheng J; Shi Y; Jia C J Bioinform Comput Biol; 2022 Feb; 20(1):2150029. PubMed ID: 34806952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]