BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30903849)

  • 21. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil.
    Yang Z; Wu Z; Liao Y; Liao Q; Yang W; Chai L
    Chemosphere; 2017 Aug; 181():1-8. PubMed ID: 28414954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of U(VI) by Fe(II) during the Fe(II)-accelerated transformation of ferrihydrite.
    Boland DD; Collins RN; Glover CJ; Payne TE; Waite TD
    Environ Sci Technol; 2014 Aug; 48(16):9086-93. PubMed ID: 25014507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial transformation of biogenic and abiogenic Fe minerals followed by in-situ incubations in an As-contaminated vs. non-contaminated aquifer.
    Glodowska M; Schneider M; Eiche E; Kontny A; Neumann T; Straub D; ; Kleindienst S; Kappler A
    Environ Pollut; 2021 Jul; 281():117012. PubMed ID: 33813189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study.
    Cui J; Jing C; Che D; Zhang J; Duan S
    J Environ Sci (China); 2015 Jun; 32():42-53. PubMed ID: 26040730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic bioremediation by biogenic iron oxides and sulfides.
    Omoregie EO; Couture RM; Van Cappellen P; Corkhill CL; Charnock JM; Polya DA; Vaughan D; Vanbroekhoven K; Lloyd JR
    Appl Environ Microbiol; 2013 Jul; 79(14):4325-35. PubMed ID: 23666325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced recovery of arsenite sorbed onto synthetic oxides by L-ascorbic acid addition to phosphate solution: calibrating a sequential leaching method for the speciation analysis of arsenic in natural samples.
    Bok Jung H; Zheng Y
    Water Res; 2006 Jun; 40(11):2168-80. PubMed ID: 16725174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite.
    Boland DD; Collins RN; Miller CJ; Glover CJ; Waite TD
    Environ Sci Technol; 2014 May; 48(10):5477-85. PubMed ID: 24724707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of sulfide on As(III) and As(V) sequestration by ferrihydrite.
    Zhao Z; Wang S; Jia Y
    Chemosphere; 2017 Oct; 185():321-328. PubMed ID: 28704663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments.
    Xue Q; Ran Y; Tan Y; Peacock CL; Du H
    Chemosphere; 2019 Jun; 224():103-110. PubMed ID: 30818188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Goethite promoted biodegradation of 2,4-dinitrophenol under nitrate reduction condition.
    Tang T; Yue Z; Wang J; Chen T; Qing C
    J Hazard Mater; 2018 Feb; 343():176-180. PubMed ID: 28950205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite.
    Stolze L; Zhang D; Guo H; Rolle M
    Environ Sci Technol; 2019 Jun; 53(12):6845-6854. PubMed ID: 31117535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the underlying effect of Fe vacancy defects on the adsorption affinity of goethite for arsenic immobilization.
    Hou J; Tan X; Xiang Y; Zheng Q; Chen C; Sha Z; Ren L; Wang M; Tan W
    Environ Pollut; 2022 Dec; 314():120268. PubMed ID: 36167163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterially mediated release and mobilization of As/Fe coupled to nitrate reduction in a sediment environment.
    Fang J; Xie Z; Wang J; Liu D; Zhong Z
    Ecotoxicol Environ Saf; 2021 Jan; 208():111478. PubMed ID: 33091775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation.
    Pi K; Xie X; Ma T; Su C; Li J; Wang Y
    Water Res; 2020 Aug; 181():115859. PubMed ID: 32438118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (Hydr)oxides.
    Ginder-Vogel M; Criddle CS; Fendorf S
    Environ Sci Technol; 2006 Jun; 40(11):3544-50. PubMed ID: 16786692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.
    Sun J; Chillrud SN; Mailloux BJ; Stute M; Singh R; Dong H; Lepre CJ; Bostick BC
    Chemosphere; 2016 Feb; 144():1106-15. PubMed ID: 26454120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream.
    Park JH; Han YS; Ahn JS
    Water Res; 2016 Dec; 106():295-303. PubMed ID: 27728822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.