These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30903965)

  • 1. Population shrinkage of covariance (PoSCE) for better individual brain functional-connectivity estimation.
    Rahim M; Thirion B; Varoquaux G
    Med Image Anal; 2019 May; 54():138-148. PubMed ID: 30903965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.
    Mejia AF; Nebel MB; Shou H; Crainiceanu CM; Pekar JJ; Mostofsky S; Caffo B; Lindquist MA
    Neuroimage; 2015 May; 112():14-29. PubMed ID: 25731998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization.
    Brier MR; Mitra A; McCarthy JE; Ances BM; Snyder AZ
    Neuroimage; 2015 Nov; 121():29-38. PubMed ID: 26208872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage.
    Mejia AF; Nebel MB; Barber AD; Choe AS; Pekar JJ; Caffo BS; Lindquist MA
    Neuroimage; 2018 May; 172():478-491. PubMed ID: 29391241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models.
    Ting CM; Ombao H; Samdin SB; Salleh SH
    IEEE Trans Med Imaging; 2018 Apr; 37(4):1011-1023. PubMed ID: 29610078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-visiting Riemannian geometry of symmetric positive definite matrices for the analysis of functional connectivity.
    You K; Park HJ
    Neuroimage; 2021 Jan; 225():117464. PubMed ID: 33075555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.
    Colclough GL; Woolrich MW; Harrison SJ; Rojas López PA; Valdes-Sosa PA; Smith SM
    Neuroimage; 2018 Sep; 178():370-384. PubMed ID: 29746906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covariance shrinkage can assess and improve functional connectomes.
    Honnorat N; Habes M
    Neuroimage; 2022 Aug; 256():119229. PubMed ID: 35460918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling.
    Varoquaux G; Baronnet F; Kleinschmidt A; Fillard P; Thirion B
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):200-8. PubMed ID: 20879232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport on Riemannian manifold for functional connectivity-based classification.
    Ng B; Dressler M; Varoquaux G; Poline JB; Greicius M; Thirion B
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):405-12. PubMed ID: 25485405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome.
    Gilson M; Moreno-Bote R; Ponce-Alvarez A; Ritter P; Deco G
    PLoS Comput Biol; 2016 Mar; 12(3):e1004762. PubMed ID: 26982185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional connectivity change as shared signal dynamics.
    Cole MW; Yang GJ; Murray JD; Repovš G; Anticevic A
    J Neurosci Methods; 2016 Feb; 259():22-39. PubMed ID: 26642966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?
    Proix T; Spiegler A; Schirner M; Rothmeier S; Ritter P; Jirsa VK
    Neuroimage; 2016 Nov; 142():135-149. PubMed ID: 27480624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wavelet-based estimator of the degrees of freedom in denoised fMRI time series for probabilistic testing of functional connectivity and brain graphs.
    Patel AX; Bullmore ET
    Neuroimage; 2016 Nov; 142():14-26. PubMed ID: 25944610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.
    Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM
    Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociating individual connectome traits using low-rank learning.
    Qin J; Shen H; Zeng LL; Gao K; Luo Z; Hu D
    Brain Res; 2019 Nov; 1722():146348. PubMed ID: 31348912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel sparse group Gaussian graphical model for functional connectivity estimation.
    Ng B; Varoquaux G; Poline JB; Thirion B
    Inf Process Med Imaging; 2013; 23():256-67. PubMed ID: 24683974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic effective connectivity in resting state fMRI.
    Park HJ; Friston KJ; Pae C; Park B; Razi A
    Neuroimage; 2018 Oct; 180(Pt B):594-608. PubMed ID: 29158202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.