These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 30903993)

  • 1. Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study.
    Bavan L; Surmacz K; Beard D; Mellon S; Rees J
    Gait Posture; 2019 May; 70():211-217. PubMed ID: 30903993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch.
    Burns DM; Leung N; Hardisty M; Whyne CM; Henry P; McLachlin S
    Physiol Meas; 2018 Jul; 39(7):075007. PubMed ID: 29952759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rehabilitation exercise assessment using inertial sensors: a cross-sectional analytical study.
    Giggins OM; Sweeney KT; Caulfield B
    J Neuroeng Rehabil; 2014 Nov; 11():158. PubMed ID: 25431092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.
    Alfakir A; Arrowsmith C; Burns D; Razmjou H; Hardisty M; Whyne C
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e38689. PubMed ID: 35998014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine-learning models for shoulder rehabilitation exercises classification using a wearable system.
    Sassi M; Carnevale A; Mancuso M; Schena E; Pecchia L; Longo UG
    Knee Surg Sports Traumatol Arthrosc; 2024 Aug; ():. PubMed ID: 39154254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supervised Machine Learning Applied to Wearable Sensor Data Can Accurately Classify Functional Fitness Exercises Within a Continuous Workout.
    Preatoni E; Nodari S; Lopomo NF
    Front Bioeng Biotechnol; 2020; 8():664. PubMed ID: 32733863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Motion Sensor Device to Facilitate Rehabilitation in Patients With Shoulder Adhesive Capsulitis: Pilot Study to Assess Feasibility.
    Chen YP; Lin CY; Tsai MJ; Chuang TY; Lee OK
    J Med Internet Res; 2020 Jul; 22(7):e17032. PubMed ID: 32457026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adherence Tracking With Smart Watches for Shoulder Physiotherapy in Rotator Cuff Pathology: Protocol for a Longitudinal Cohort Study.
    Burns D; Razmjou H; Shaw J; Richards R; McLachlin S; Hardisty M; Henry P; Whyne C
    JMIR Res Protoc; 2020 Jul; 9(7):e17841. PubMed ID: 32623366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning model for classifying shoulder pain rehabilitation exercises using IMU sensor.
    Lee K; Kim JH; Hong H; Jeong Y; Ryu H; Kim H; Lee SU
    J Neuroeng Rehabil; 2024 Mar; 21(1):42. PubMed ID: 38539223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dual-Accelerometer System for Classifying Physical Activity in Children and Adults.
    Stewart T; Narayanan A; Hedayatrad L; Neville J; Mackay L; Duncan S
    Med Sci Sports Exerc; 2018 Dec; 50(12):2595-2602. PubMed ID: 30048411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol of a systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    Syst Rev; 2018 Oct; 7(1):174. PubMed ID: 30355320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.
    Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B
    Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis.
    Imura T; Toda H; Iwamoto Y; Inagawa T; Imada N; Tanaka R; Inoue Y; Araki H; Araki O
    J Stroke Cerebrovasc Dis; 2021 Oct; 30(10):106011. PubMed ID: 34325274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of shoulder rehabilitation exercises for single and multiple inertial sensor systems.
    Brennan L; Bevilacqua A; Kechadi T; Caulfield B
    J Rehabil Assist Technol Eng; 2020; 7():2055668320915377. PubMed ID: 32913661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation.
    Li Q; Liu Y; Zhu J; Chen Z; Liu L; Yang S; Zhu G; Zhu B; Li J; Jin R; Tao J; Chen L
    JMIR Mhealth Uhealth; 2021 Sep; 9(9):e24402. PubMed ID: 34473067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of at-home physiotherapy.
    Boyer P; Burns D; Whyne C
    Bone Joint Res; 2023 Mar; 12(3):165-177. PubMed ID: 37051835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.