These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 30904330)
1. Adipose-derived mesenchymal stromal cells improve hemodynamic function in pulmonary arterial hypertension: identification of microRNAs implicated in modulating endothelial function. Wang P; Zhang C; Li J; Luo L; Zhang S; Dong F; Tang Z; Ni S Cytotherapy; 2019 Apr; 21(4):416-427. PubMed ID: 30904330 [TBL] [Abstract][Full Text] [Related]
2. bFGF overexpression adipose derived mesenchymal stem cells improved the survival of pulmonary arterial endothelial cells via PI3k/Akt signaling pathway. Wang P; Li J; Zhang C; Luo L; Ni S; Tang Z Int J Biochem Cell Biol; 2019 Aug; 113():87-94. PubMed ID: 31200125 [TBL] [Abstract][Full Text] [Related]
3. Function of Adipose-Derived Mesenchymal Stem Cells in Monocrotaline-Induced Pulmonary Arterial Hypertension through miR-191 via Regulation of BMPR2. Zhang C; Wang P; Mohammed A; Zhou Z; Zhang S; Ni S; Tang Z Biomed Res Int; 2019; 2019():2858750. PubMed ID: 31119161 [TBL] [Abstract][Full Text] [Related]
4. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling. Cheng G; Wang X; Li Y; He L Stem Cell Res Ther; 2017 Feb; 8(1):34. PubMed ID: 28187784 [TBL] [Abstract][Full Text] [Related]
5. Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. de Mendonça L; Felix NS; Blanco NG; Da Silva JS; Ferreira TP; Abreu SC; Cruz FF; Rocha N; Silva PM; Martins V; Capelozzi VL; Zapata-Sudo G; Rocco PRM; Silva PL Stem Cell Res Ther; 2017 Oct; 8(1):220. PubMed ID: 28974252 [TBL] [Abstract][Full Text] [Related]
6. miR-181b-5p inhibits endothelial-mesenchymal transition in monocrotaline-induced pulmonary arterial hypertension by targeting endocan and TGFBR1. Zhao H; Wang Y; Zhang X; Guo Y; Wang X Toxicol Appl Pharmacol; 2020 Jan; 386():114827. PubMed ID: 31734320 [TBL] [Abstract][Full Text] [Related]
7. MicroRNA‑15a‑5p induces pulmonary artery smooth muscle cell apoptosis in a pulmonary arterial hypertension model via the VEGF/p38/MMP‑2 signaling pathway. Zhang W; Li Y; Xi X; Zhu G; Wang S; Liu Y; Song M Int J Mol Med; 2020 Feb; 45(2):461-474. PubMed ID: 31894295 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA-140-5p targeting tumor necrosis factor-α prevents pulmonary arterial hypertension. Zhu TT; Zhang WF; Yin YL; Liu YH; Song P; Xu J; Zhang MX; Li P J Cell Physiol; 2019 Jun; 234(6):9535-9550. PubMed ID: 30367500 [TBL] [Abstract][Full Text] [Related]
9. Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial Hypertension. Van der Feen DE; Kurakula K; Tremblay E; Boucherat O; Bossers GPL; Szulcek R; Bourgeois A; Lampron MC; Habbout K; Martineau S; Paulin R; Kulikowski E; Jahagirdar R; Schalij I; Bogaard HJ; Bartelds B; Provencher S; Berger RMF; Bonnet S; Goumans MJ Am J Respir Crit Care Med; 2019 Oct; 200(7):910-920. PubMed ID: 31042405 [No Abstract] [Full Text] [Related]
10. miR-27a promotes endothelial-mesenchymal transition in hypoxia-induced pulmonary arterial hypertension by suppressing BMP signaling. Liu T; Zou XZ; Huang N; Ge XY; Yao MZ; Liu H; Zhang Z; Hu CP Life Sci; 2019 Jun; 227():64-73. PubMed ID: 31004656 [TBL] [Abstract][Full Text] [Related]
11. Prostaglandin E1 reduces apoptosis and improves the homing of mesenchymal stem cells in pulmonary arterial hypertension by regulating hypoxia-inducible factor 1 alpha. Jiang DT; Tuo L; Bai X; Bing WD; Qu QX; Zhao X; Song GM; Bi YW; Sun WY Stem Cell Res Ther; 2022 Jul; 13(1):316. PubMed ID: 35842683 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis on the anti-inflammatory/immune effect of mesenchymal stem cell therapy for the treatment of pulmonary arterial hypertension. Oh S; Jang AY; Chae S; Choi S; Moon J; Kim M; Spiekerkoetter E; Zamanian RT; Yang PC; Hwang D; Byun K; Chung WJ Sci Rep; 2021 Jan; 11(1):2012. PubMed ID: 33479312 [TBL] [Abstract][Full Text] [Related]
13. Phenotypically Silent Bone Morphogenetic Protein Receptor 2 Mutations Predispose Rats to Inflammation-Induced Pulmonary Arterial Hypertension by Enhancing the Risk for Neointimal Transformation. Tian W; Jiang X; Sung YK; Shuffle E; Wu TH; Kao PN; Tu AB; Dorfmüller P; Cao A; Wang L; Peng G; Kim Y; Zhang P; Chappell J; Pasupneti S; Dahms P; Maguire P; Chaib H; Zamanian R; Peters-Golden M; Snyder MP; Voelkel NF; Humbert M; Rabinovitch M; Nicolls MR Circulation; 2019 Oct; 140(17):1409-1425. PubMed ID: 31462075 [TBL] [Abstract][Full Text] [Related]
14. Role of Extracellular Vesicles in Pulmonary Arterial Hypertension: Modulation of Pulmonary Endothelial Function and Angiogenesis. Khandagale A; Åberg M; Wikström G; Bergström Lind S; Shevchenko G; Björklund E; Siegbahn A; Christersson C Arterioscler Thromb Vasc Biol; 2020 Sep; 40(9):2293-2309. PubMed ID: 32757648 [TBL] [Abstract][Full Text] [Related]
15. Tumor Necrosis Factor-α-Induced Protein-8-like 2 Transfected Adipose-Derived Stem Cells Regulated the Dysfunction of Monocrotaline Pyrrole-Induced Pulmonary Arterial Smooth Muscle Cells and Pulmonary Arterial Endothelial Cells. Li J; He X; Liu F; Zheng X; Jiang J J Cardiovasc Pharmacol; 2024 Jan; 83(1):73-85. PubMed ID: 38180455 [TBL] [Abstract][Full Text] [Related]
16. Protective effect of hydrogen sulfide on monocrotaline‑induced pulmonary arterial hypertension via inhibition of the endothelial mesenchymal transition. Zhang H; Lin Y; Ma Y; Zhang J; Wang C; Zhang H Int J Mol Med; 2019 Dec; 44(6):2091-2102. PubMed ID: 31573044 [TBL] [Abstract][Full Text] [Related]
17. Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1. Wang X; Yang Y; Yang D; Tong G; Lv S; Lin X; Chen C; Dong W J Vasc Surg; 2016 Nov; 64(5):1468-1477. PubMed ID: 26527422 [TBL] [Abstract][Full Text] [Related]
18. PPARγ-p53-Mediated Vasculoregenerative Program to Reverse Pulmonary Hypertension. Hennigs JK; Cao A; Li CG; Shi M; Mienert J; Miyagawa K; Körbelin J; Marciano DP; Chen PI; Roughley M; Elliott MV; Harper RL; Bill MA; Chappell J; Moonen JR; Diebold I; Wang L; Snyder MP; Rabinovitch M Circ Res; 2021 Feb; 128(3):401-418. PubMed ID: 33322916 [TBL] [Abstract][Full Text] [Related]
19. MicroRNA-126 affects cell apoptosis, proliferation, cell cycle and modulates VEGF/TGF-β levels in pulmonary artery endothelial cells. Yuan Y; Shen C; Zhao SL; Hu YJ; Song Y; Zhong QJ Eur Rev Med Pharmacol Sci; 2019 Apr; 23(7):3058-3069. PubMed ID: 31002170 [TBL] [Abstract][Full Text] [Related]
20. Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension. Kim J; Hwangbo C; Hu X; Kang Y; Papangeli I; Mehrotra D; Park H; Ju H; McLean DL; Comhair SA; Erzurum SC; Chun HJ Circulation; 2015 Jan; 131(2):190-9. PubMed ID: 25336633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]